Further Evaluation of Probabilistic Convective Precipitation Forecasts Using the QPF–PoP Neighborhood Relationship

Further Evaluation of Probabilistic Convective Precipitation Forecasts Using the QPF–PoP... AbstractA neighborhood postprocessing approach that relates quantitative precipitation forecasts (QPF) to probability of precipitation (PoP) forecasts applied to a single model run was found by Schaffer et al. to be as good as traditional ensemble-based approaches using 10 members in 30-h forecasts of convective precipitation. The present study evaluates if PoP forecasts derived from additional variations of the approach can improve PoP forecasts further compared with previous methods. Ensemble forecasts from the Center for Analysis and Prediction of Storms (CAPS) are used for neighborhood tests comparing a single model run and a traditional ensemble. In the first test, PoP forecasts for different combinations of training and testing datasets using a single model member with 4-km grid spacing are compared against those obtained with a 10-member traditional ensemble. Overall, forecasts for the neighborhood approach with just one member are only slightly less accurate to those using a more traditional neighborhood approach with the ensemble. PoP forecasts improve when using older data for training and newer data for testing. Assessments of the sensitivity of the neighborhood PoPs suggest that thinning of the horizontal grid at fine grid spacing is an effective way of maintaining the accuracy of PoP forecasts while reducing computational expenses. In an additional test, the diurnal variation of the forecast is examined on a day-by-day basis, showing good agreement between the two approaches for all but a few cases during 2008. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Further Evaluation of Probabilistic Convective Precipitation Forecasts Using the QPF–PoP Neighborhood Relationship

Loading next page...
 
/lp/ams/further-evaluation-of-probabilistic-convective-precipitation-forecasts-e0plmZ00H0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-16-0227.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA neighborhood postprocessing approach that relates quantitative precipitation forecasts (QPF) to probability of precipitation (PoP) forecasts applied to a single model run was found by Schaffer et al. to be as good as traditional ensemble-based approaches using 10 members in 30-h forecasts of convective precipitation. The present study evaluates if PoP forecasts derived from additional variations of the approach can improve PoP forecasts further compared with previous methods. Ensemble forecasts from the Center for Analysis and Prediction of Storms (CAPS) are used for neighborhood tests comparing a single model run and a traditional ensemble. In the first test, PoP forecasts for different combinations of training and testing datasets using a single model member with 4-km grid spacing are compared against those obtained with a 10-member traditional ensemble. Overall, forecasts for the neighborhood approach with just one member are only slightly less accurate to those using a more traditional neighborhood approach with the ensemble. PoP forecasts improve when using older data for training and newer data for testing. Assessments of the sensitivity of the neighborhood PoPs suggest that thinning of the horizontal grid at fine grid spacing is an effective way of maintaining the accuracy of PoP forecasts while reducing computational expenses. In an additional test, the diurnal variation of the forecast is examined on a day-by-day basis, showing good agreement between the two approaches for all but a few cases during 2008.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off