Frontogenesis in the Agulhas Return Current region simulated by a high-resolution CGCM

Frontogenesis in the Agulhas Return Current region simulated by a high-resolution CGCM AbstractDetailed mechanisms for frontogenesis/frontolysis of the sea surface temperature (SST) front in the Agulhas Return Current (ARC) region are investigated using outputs from a high-resolution coupled general circulation model. The SST front is maintained throughout the year through an approximate balance between frontolysis by surface heat flux and frontogenesis by horizontal advection. Although a southward (northward) cross-isotherm flow on the northern (southern) side of the front is weaker than a strong eastward along-isotherm current in the frontal region, this cross-isotherm confluent flow advects warmer (cooler) temperature toward the SST front north (south) of the front and acts as the dominant frontogenesis mechanism. In addition, stronger (weaker) frontogenesis in austral summer (winter) is attributed to the stronger (weaker) cross-isotherm confluence, which may be linked to seasonal variations of the Agulhas Current, ARC, and Antarctic Circumpolar Current. On the other hand, the contribution from entrainment is relatively small, because frontolysis by larger (smaller) entrainment velocity on the northern (southern) side opposes frontogenesis by less (more) effective cooling associated with a thicker (thinner) mixed layer and smaller (larger) temperature difference between the mixed layer and entrained water in the northern (southern) region. To gain further insight into the time-mean cross-isotherm confluent flow in the frontal region, the vorticity balance is examined. It is shown that anticyclonic (cyclonic) vorticity advection north (south) of the front by the mean cross-isotherm confluence is in balance with the sum of cyclonic (anticyclonic) vorticity advection by the mean along-isotherm flow and cross-isotherm eddy-mean interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Frontogenesis in the Agulhas Return Current region simulated by a high-resolution CGCM

Loading next page...
 
/lp/ams/frontogenesis-in-the-agulhas-return-current-region-simulated-by-a-high-xn6Z8s04Se
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0038.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDetailed mechanisms for frontogenesis/frontolysis of the sea surface temperature (SST) front in the Agulhas Return Current (ARC) region are investigated using outputs from a high-resolution coupled general circulation model. The SST front is maintained throughout the year through an approximate balance between frontolysis by surface heat flux and frontogenesis by horizontal advection. Although a southward (northward) cross-isotherm flow on the northern (southern) side of the front is weaker than a strong eastward along-isotherm current in the frontal region, this cross-isotherm confluent flow advects warmer (cooler) temperature toward the SST front north (south) of the front and acts as the dominant frontogenesis mechanism. In addition, stronger (weaker) frontogenesis in austral summer (winter) is attributed to the stronger (weaker) cross-isotherm confluence, which may be linked to seasonal variations of the Agulhas Current, ARC, and Antarctic Circumpolar Current. On the other hand, the contribution from entrainment is relatively small, because frontolysis by larger (smaller) entrainment velocity on the northern (southern) side opposes frontogenesis by less (more) effective cooling associated with a thicker (thinner) mixed layer and smaller (larger) temperature difference between the mixed layer and entrained water in the northern (southern) region. To gain further insight into the time-mean cross-isotherm confluent flow in the frontal region, the vorticity balance is examined. It is shown that anticyclonic (cyclonic) vorticity advection north (south) of the front by the mean cross-isotherm confluence is in balance with the sum of cyclonic (anticyclonic) vorticity advection by the mean along-isotherm flow and cross-isotherm eddy-mean interaction.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Aug 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off