Formation of Two-Dimensional Circulation in Response to Unsteady Wave Forcing in the Middle Atmosphere

Formation of Two-Dimensional Circulation in Response to Unsteady Wave Forcing in the Middle... AbstractIn previous studies, a steady-state assumption has been frequently used for the analysis of wave-induced meridional circulation. In general, however, the wave forcing is not constant and thus induced circulation can vary in time. Thus, to understand such transient behaviors, time evolutions of a slow variable describing balanced flows and two fast variables describing gravity waves and flows that are slaved to balanced flows are investigated. A Boussinesq equation system is used to examine zonal-mean flow responses to unsteady zonally uniform forcing. Green’s function is used to analytically obtain the evolution of meridional circulation. Responses to zonal wave forcing are mainly examined although responses to a diabatic heating and to wave forcing are discussed in brief. For forcing with a step function shape in time, gravity waves are radiated as a transient response. The time needed to form the circulation depends on the aspect ratio (i.e., latitudinal to vertical lengths) of wave forcing, which determines the group velocity of gravity waves. When the forcing time scale is longer than the inertial period, the response does not include gravity wave radiation and mainly involves a meridional circulation, which is similar to the solution for steady forcing. The two-celled meridional circulation describes the early stage response to the forcing and can be used to examine how the wave forcing is distributed to zonal wind acceleration and Coriolis torque. It is shown that the distribution depends on the aspect ratio of the forcing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Formation of Two-Dimensional Circulation in Response to Unsteady Wave Forcing in the Middle Atmosphere

Loading next page...
 
/lp/ams/formation-of-two-dimensional-circulation-in-response-to-unsteady-wave-kMF752TQtT
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0374.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn previous studies, a steady-state assumption has been frequently used for the analysis of wave-induced meridional circulation. In general, however, the wave forcing is not constant and thus induced circulation can vary in time. Thus, to understand such transient behaviors, time evolutions of a slow variable describing balanced flows and two fast variables describing gravity waves and flows that are slaved to balanced flows are investigated. A Boussinesq equation system is used to examine zonal-mean flow responses to unsteady zonally uniform forcing. Green’s function is used to analytically obtain the evolution of meridional circulation. Responses to zonal wave forcing are mainly examined although responses to a diabatic heating and to wave forcing are discussed in brief. For forcing with a step function shape in time, gravity waves are radiated as a transient response. The time needed to form the circulation depends on the aspect ratio (i.e., latitudinal to vertical lengths) of wave forcing, which determines the group velocity of gravity waves. When the forcing time scale is longer than the inertial period, the response does not include gravity wave radiation and mainly involves a meridional circulation, which is similar to the solution for steady forcing. The two-celled meridional circulation describes the early stage response to the forcing and can be used to examine how the wave forcing is distributed to zonal wind acceleration and Coriolis torque. It is shown that the distribution depends on the aspect ratio of the forcing.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jan 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off