Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing

Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing AbstractPoleward shifts of the extratropical atmospheric circulation are a common response to CO2 forcing in global climate models (GCMs), but little is known about the time dependence of this response. Here it is shown that in coupled climate models, the long-term evolution of sea surface temperatures (SSTs) induces two distinct time scales of circulation response to step-like CO2 forcing. In most Coupled Model Intercomparison Project phase 5 GCMs as well as in the multi-model mean, all of the poleward shift of the midlatitude jets and Hadley cell edge occurs in a fast response within 5 to 10 years of the forcing, during which less than half of the expected equilibrium warming is realized. Compared with this fast response, the slow response over subsequent decades to centuries features stronger polar amplification (especially in the Antarctic), enhanced warming in the Southern Ocean, an El Niño-like pattern of tropical Pacific warming, and weaker land-sea contrast. Atmosphere-only GCM experiments demonstrate that the SST evolution drives the difference between the fast and slow circulation responses, although the direct radiative effect of CO2 also contributes to the fast response. It is further shown that the fast and slow responses determine the long-term evolution of the circulation response to warming in the RCP4.5 scenario. The results imply that shifts in midlatitude circulation generally scale with the radiative forcing, rather than with global-mean temperature change. A corollary is that time slices taken from a transient simulation at a given level of warming will considerably overestimate the extratropical circulation response in a stabilized climate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing

Loading next page...
 
/lp/ams/fast-and-slow-components-of-the-extratropical-atmospheric-circulation-bTCI6DrZwB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0323.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPoleward shifts of the extratropical atmospheric circulation are a common response to CO2 forcing in global climate models (GCMs), but little is known about the time dependence of this response. Here it is shown that in coupled climate models, the long-term evolution of sea surface temperatures (SSTs) induces two distinct time scales of circulation response to step-like CO2 forcing. In most Coupled Model Intercomparison Project phase 5 GCMs as well as in the multi-model mean, all of the poleward shift of the midlatitude jets and Hadley cell edge occurs in a fast response within 5 to 10 years of the forcing, during which less than half of the expected equilibrium warming is realized. Compared with this fast response, the slow response over subsequent decades to centuries features stronger polar amplification (especially in the Antarctic), enhanced warming in the Southern Ocean, an El Niño-like pattern of tropical Pacific warming, and weaker land-sea contrast. Atmosphere-only GCM experiments demonstrate that the SST evolution drives the difference between the fast and slow circulation responses, although the direct radiative effect of CO2 also contributes to the fast response. It is further shown that the fast and slow responses determine the long-term evolution of the circulation response to warming in the RCP4.5 scenario. The results imply that shifts in midlatitude circulation generally scale with the radiative forcing, rather than with global-mean temperature change. A corollary is that time slices taken from a transient simulation at a given level of warming will considerably overestimate the extratropical circulation response in a stabilized climate.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Sep 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off