Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State

Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State AbstractPrevious studies have shown that the Madden–Julian oscillation (MJO) has a global impact that may provide an important source of skill for subseasonal predictions. The extratropical response was found to be the strongest when the tropical diabatic heating has a dipole structure with convection anomaly centers of opposite sign in the eastern Indian Ocean and the western Pacific. A positive (negative) MJO dipole heating refers to that with heating (cooling) in the eastern Indian Ocean and cooling (heating) in the western Pacific. In this study, two aspects of the extratropical response to the MJO are examined: 1) nonlinearity, which answers the question of whether the response to a positive MJO dipole heating is the mirror image of that to a negative MJO, and 2) sensitivity to the initial state, which explores the dependence of the extratropical response on the initial condition of the westerly jet.Ensemble integrations using a primitive-equation global atmospheric circulation model are performed with anomalous tropical thermal forcings that resemble a positive MJO (+MJO) and a negative MJO (−MJO). The response in the first week is largely linear. After that, significant asymmetry is found between the response in the positive MJO and the negative MJO. The 500-hPa negative geopotential height response in the North Pacific of the −MJO run is located about 30° east of the positive height response of the +MJO run. There is also an eastward shift of the extratropical wave train in the Pacific–North American region. This simulated nonlinearity is in agreement with the observations. The two leading response patterns among the ensemble members are identified by an empirical orthogonal function (EOF) analysis. EOF1 represents an eastward shift of the wave train, which is positively correlated with strengthening of the East Asian subtropical upper-troposphere westerly jet in the initial condition. On the other hand, EOF2 represents an amplification of the response, which is associated with a southward shift of the westerly jet in the initial state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State

Loading next page...
 
/lp/ams/extratropical-response-to-the-mjo-nonlinearity-and-sensitivity-to-the-uEaYGyQmJ8
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0189.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPrevious studies have shown that the Madden–Julian oscillation (MJO) has a global impact that may provide an important source of skill for subseasonal predictions. The extratropical response was found to be the strongest when the tropical diabatic heating has a dipole structure with convection anomaly centers of opposite sign in the eastern Indian Ocean and the western Pacific. A positive (negative) MJO dipole heating refers to that with heating (cooling) in the eastern Indian Ocean and cooling (heating) in the western Pacific. In this study, two aspects of the extratropical response to the MJO are examined: 1) nonlinearity, which answers the question of whether the response to a positive MJO dipole heating is the mirror image of that to a negative MJO, and 2) sensitivity to the initial state, which explores the dependence of the extratropical response on the initial condition of the westerly jet.Ensemble integrations using a primitive-equation global atmospheric circulation model are performed with anomalous tropical thermal forcings that resemble a positive MJO (+MJO) and a negative MJO (−MJO). The response in the first week is largely linear. After that, significant asymmetry is found between the response in the positive MJO and the negative MJO. The 500-hPa negative geopotential height response in the North Pacific of the −MJO run is located about 30° east of the positive height response of the +MJO run. There is also an eastward shift of the extratropical wave train in the Pacific–North American region. This simulated nonlinearity is in agreement with the observations. The two leading response patterns among the ensemble members are identified by an empirical orthogonal function (EOF) analysis. EOF1 represents an eastward shift of the wave train, which is positively correlated with strengthening of the East Asian subtropical upper-troposphere westerly jet in the initial condition. On the other hand, EOF2 represents an amplification of the response, which is associated with a southward shift of the westerly jet in the initial state.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jan 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial