Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State

Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State AbstractPrevious studies have shown that the Madden–Julian oscillation (MJO) has a global impact that may provide an important source of skill for subseasonal predictions. The extratropical response was found to be the strongest when the tropical diabatic heating has a dipole structure with convection anomaly centers of opposite sign in the eastern Indian Ocean and the western Pacific. A positive (negative) MJO dipole heating refers to that with heating (cooling) in the eastern Indian Ocean and cooling (heating) in the western Pacific. In this study, two aspects of the extratropical response to the MJO are examined: 1) nonlinearity, which answers the question of whether the response to a positive MJO dipole heating is the mirror image of that to a negative MJO, and 2) sensitivity to the initial state, which explores the dependence of the extratropical response on the initial condition of the westerly jet.Ensemble integrations using a primitive-equation global atmospheric circulation model are performed with anomalous tropical thermal forcings that resemble a positive MJO (+MJO) and a negative MJO (−MJO). The response in the first week is largely linear. After that, significant asymmetry is found between the response in the positive MJO and the negative MJO. The 500-hPa negative geopotential height response in the North Pacific of the −MJO run is located about 30° east of the positive height response of the +MJO run. There is also an eastward shift of the extratropical wave train in the Pacific–North American region. This simulated nonlinearity is in agreement with the observations. The two leading response patterns among the ensemble members are identified by an empirical orthogonal function (EOF) analysis. EOF1 represents an eastward shift of the wave train, which is positively correlated with strengthening of the East Asian subtropical upper-troposphere westerly jet in the initial condition. On the other hand, EOF2 represents an amplification of the response, which is associated with a southward shift of the westerly jet in the initial state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State

Loading next page...
 
/lp/ams/extratropical-response-to-the-mjo-nonlinearity-and-sensitivity-to-the-uEaYGyQmJ8
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0189.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPrevious studies have shown that the Madden–Julian oscillation (MJO) has a global impact that may provide an important source of skill for subseasonal predictions. The extratropical response was found to be the strongest when the tropical diabatic heating has a dipole structure with convection anomaly centers of opposite sign in the eastern Indian Ocean and the western Pacific. A positive (negative) MJO dipole heating refers to that with heating (cooling) in the eastern Indian Ocean and cooling (heating) in the western Pacific. In this study, two aspects of the extratropical response to the MJO are examined: 1) nonlinearity, which answers the question of whether the response to a positive MJO dipole heating is the mirror image of that to a negative MJO, and 2) sensitivity to the initial state, which explores the dependence of the extratropical response on the initial condition of the westerly jet.Ensemble integrations using a primitive-equation global atmospheric circulation model are performed with anomalous tropical thermal forcings that resemble a positive MJO (+MJO) and a negative MJO (−MJO). The response in the first week is largely linear. After that, significant asymmetry is found between the response in the positive MJO and the negative MJO. The 500-hPa negative geopotential height response in the North Pacific of the −MJO run is located about 30° east of the positive height response of the +MJO run. There is also an eastward shift of the extratropical wave train in the Pacific–North American region. This simulated nonlinearity is in agreement with the observations. The two leading response patterns among the ensemble members are identified by an empirical orthogonal function (EOF) analysis. EOF1 represents an eastward shift of the wave train, which is positively correlated with strengthening of the East Asian subtropical upper-troposphere westerly jet in the initial condition. On the other hand, EOF2 represents an amplification of the response, which is associated with a southward shift of the westerly jet in the initial state.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jan 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off