Extended-Range Atmospheric Prediction and the Lorenz Model1

Extended-Range Atmospheric Prediction and the Lorenz Model1 The physical basis for extended-range prediction is explored using the famous three-component Lorenz convection model, taken as a conceptual representation of the chaotic extratropical circulation, and extended by coupling to a linear oscillator to represent large-scale tropicalextratropical interactions. The model is used to analyze the roles of time averaging and ensemble forecasting, and, in extended form, the impact of both anomalous tropical sea surface temperature and anomalous extratropical sea surface temperature. The conceptual paradigms and analytic calculations presented are used to interpret results from numerical weather prediction and general circulation model experiments. Some remarks on the relevance of predictability studies for the climate change problem are given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Extended-Range Atmospheric Prediction and the Lorenz Model1

Loading next page...
 
/lp/ams/extended-range-atmospheric-prediction-and-the-lorenz-model1-yxAkxLKIrO
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The physical basis for extended-range prediction is explored using the famous three-component Lorenz convection model, taken as a conceptual representation of the chaotic extratropical circulation, and extended by coupling to a linear oscillator to represent large-scale tropicalextratropical interactions. The model is used to analyze the roles of time averaging and ensemble forecasting, and, in extended form, the impact of both anomalous tropical sea surface temperature and anomalous extratropical sea surface temperature. The conceptual paradigms and analytic calculations presented are used to interpret results from numerical weather prediction and general circulation model experiments. Some remarks on the relevance of predictability studies for the climate change problem are given.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 1, 1993

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off