Examining the Hydrological Variations in an Aquaplanet World Using Wave Activity Transformation

Examining the Hydrological Variations in an Aquaplanet World Using Wave Activity Transformation AbstractBuilding on the recent advent of the concept of finite-amplitude wave activity, a contour-following diagnostics for column water vapor (CWV) is developed and applied to a pair of aquaplanet model simulations to understand and quantify the higher moments in the global hydrological cycle. The Lagrangian nature of the diagnostics leads to a more tractable formalism for the transient, zonally asymmetric component of the hydrological cycle, with a strong linear relation emerging between the wave activity and the wave component of precipitation minus evaporation (). The dry-versus-wet disparity in the transient hydrological cycle is measured by , and it is found to increase at a super-Clausius–Clapeyron rate at the poleward side of the mean storm track in response to a uniform sea surface temperature (SST) warming and the meridional structure of the increase can be largely attributed to the change of the meridional stirring scale of the midlatitude Rossby waves. Further scaling for indicates that the rate of the wavy hydrological cycle, measured by the ratio of to the CWV wave activity, is subdued almost everywhere in the extratropics, implying an overall weakening of the transient circulation. Extending the CWV wave activity analysis to the transient moist regions helps reveal some unique characteristics of atmospheric rivers in terms of transport function, minimum precipitation efficiency, and maximum hydrological cycle rate, as well as an overall weakening of the hydrological cycle rate in the atmospheric river regions under SST warming. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Examining the Hydrological Variations in an Aquaplanet World Using Wave Activity Transformation

Loading next page...
 
/lp/ams/examining-the-hydrological-variations-in-an-aquaplanet-world-using-HPmeg8ZK0z
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0561.1
Publisher site
See Article on Publisher Site

Abstract

AbstractBuilding on the recent advent of the concept of finite-amplitude wave activity, a contour-following diagnostics for column water vapor (CWV) is developed and applied to a pair of aquaplanet model simulations to understand and quantify the higher moments in the global hydrological cycle. The Lagrangian nature of the diagnostics leads to a more tractable formalism for the transient, zonally asymmetric component of the hydrological cycle, with a strong linear relation emerging between the wave activity and the wave component of precipitation minus evaporation (). The dry-versus-wet disparity in the transient hydrological cycle is measured by , and it is found to increase at a super-Clausius–Clapeyron rate at the poleward side of the mean storm track in response to a uniform sea surface temperature (SST) warming and the meridional structure of the increase can be largely attributed to the change of the meridional stirring scale of the midlatitude Rossby waves. Further scaling for indicates that the rate of the wavy hydrological cycle, measured by the ratio of to the CWV wave activity, is subdued almost everywhere in the extratropics, implying an overall weakening of the transient circulation. Extending the CWV wave activity analysis to the transient moist regions helps reveal some unique characteristics of atmospheric rivers in terms of transport function, minimum precipitation efficiency, and maximum hydrological cycle rate, as well as an overall weakening of the hydrological cycle rate in the atmospheric river regions under SST warming.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off