Exact expression for the lifting condensation level

Exact expression for the lifting condensation level AbstractMany analytic, but approximate, expressions have been proposed for the height of the lifting condensation level (LCL), including the popular expressions by Espy (1836), Bolton (1980), and Lawrence (2005). Here, the exact, explicit, analytic expression is derived for an air parcel’s LCL as a function of its temperature and relative humidity. Unlike previous analytic expressions, some of which can have errors as high as hundreds or thousands of meters, this exact expression is accurate to within the uncertainty of empirical vapor-pressure measurements: this translates into an uncertainty of around five meters for all temperatures and relative humidities. An exact, explicit, analytic expression for the lifting deposition level (LDL) is also derived, and its behavior is compared to the LCL. At sufficiently cold temperatures, aerosols freeze homogeneously below the LCL; an approximate, implicit, analytic expression is given for this lifting freezing level (LFL). By comparing the LCL, LDL, and LFL, it is found that a well-mixed boundary layer can have an ice-supersaturated layer that is no thicker than 400 meters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Exact expression for the lifting condensation level

Loading next page...
 
/lp/ams/exact-expression-for-the-lifting-condensation-level-cYvpC9OjCa
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0102.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMany analytic, but approximate, expressions have been proposed for the height of the lifting condensation level (LCL), including the popular expressions by Espy (1836), Bolton (1980), and Lawrence (2005). Here, the exact, explicit, analytic expression is derived for an air parcel’s LCL as a function of its temperature and relative humidity. Unlike previous analytic expressions, some of which can have errors as high as hundreds or thousands of meters, this exact expression is accurate to within the uncertainty of empirical vapor-pressure measurements: this translates into an uncertainty of around five meters for all temperatures and relative humidities. An exact, explicit, analytic expression for the lifting deposition level (LDL) is also derived, and its behavior is compared to the LCL. At sufficiently cold temperatures, aerosols freeze homogeneously below the LCL; an approximate, implicit, analytic expression is given for this lifting freezing level (LFL). By comparing the LCL, LDL, and LFL, it is found that a well-mixed boundary layer can have an ice-supersaturated layer that is no thicker than 400 meters.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Sep 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off