Evolution of Mesoscale Convective System Organizational Structure and Convective Line Propagation

Evolution of Mesoscale Convective System Organizational Structure and Convective Line Propagation AbstractThis study examines organizational changes and periods of rapid forward propagation in an MCS on 6 July 2015 in South Dakota. The MCS case was the focus of a Plains Elevated Convection at Night (PECAN) IOP. Data from the Sioux Falls WSR-88D and a high-resolution WRF simulation are analyzed to examine two periods of rapid forward propagation (or surges) and organizational changes. During the first surge (surge A), the northern portion of the convective line propagates eastward faster than the southern portion, and the northern portion of the leading line transitions from a single convective core to a multicellular structure as it merges with convection initiation. Radar reflectivity factor Z and graupel concentrations decrease above the melting layer, while at lower altitudes Z increases. The MCS cold pool also intensifies and deepens beneath an expanded region of high rainwater content and subsaturated air. Throughout surge A, a mesoscale circulation with strong rear-to-front near-surface flow and front-to-rear midlevel flow is also evident. By the end of surge A, the leading edge of the MCS cold pool is beneath developing convection initiation ahead of the original convective line while the original convective updraft weakened and moved rearward. This MCS evolution is similar to discrete propagation events discussed in past studies, except with new convection developing along an intersecting convective band. During surge B, the MCS transitions from a multicellular structure to a single, intense updraft. Smaller microphysical and thermodynamic changes are observed within the MCS during surge B compared to surge A, and the mesoscale circulation continues to develop. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Evolution of Mesoscale Convective System Organizational Structure and Convective Line Propagation

Monthly Weather Review , Volume 145 (9): 22 – Sep 21, 2017

Loading next page...
 
/lp/ams/evolution-of-mesoscale-convective-system-organizational-structure-and-R2qigQFAYD
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0406.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study examines organizational changes and periods of rapid forward propagation in an MCS on 6 July 2015 in South Dakota. The MCS case was the focus of a Plains Elevated Convection at Night (PECAN) IOP. Data from the Sioux Falls WSR-88D and a high-resolution WRF simulation are analyzed to examine two periods of rapid forward propagation (or surges) and organizational changes. During the first surge (surge A), the northern portion of the convective line propagates eastward faster than the southern portion, and the northern portion of the leading line transitions from a single convective core to a multicellular structure as it merges with convection initiation. Radar reflectivity factor Z and graupel concentrations decrease above the melting layer, while at lower altitudes Z increases. The MCS cold pool also intensifies and deepens beneath an expanded region of high rainwater content and subsaturated air. Throughout surge A, a mesoscale circulation with strong rear-to-front near-surface flow and front-to-rear midlevel flow is also evident. By the end of surge A, the leading edge of the MCS cold pool is beneath developing convection initiation ahead of the original convective line while the original convective updraft weakened and moved rearward. This MCS evolution is similar to discrete propagation events discussed in past studies, except with new convection developing along an intersecting convective band. During surge B, the MCS transitions from a multicellular structure to a single, intense updraft. Smaller microphysical and thermodynamic changes are observed within the MCS during surge B compared to surge A, and the mesoscale circulation continues to develop.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Sep 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off