Evaluation of Quantitative Precipitation Estimations through Hydrological Modeling in IFloodS River Basins

Evaluation of Quantitative Precipitation Estimations through Hydrological Modeling in IFloodS... AbstractA multiple-product-driven hydrologic modeling framework (MMF) is utilized for evaluation of quantitative precipitation estimation (QPE) products, motivated by improving the utility of satellite QPE in global flood modeling. This work addresses the challenge of objectively determining the relative value of various QPEs at river basin/subbasin scales. A reference precipitation dataset is created using a long-term water-balance approach with independent data sources. The intercomparison of nine QPEs and corresponding hydrologic simulations indicates that all products with long-term (2002–13) records have similar merits as over the short-term (April–June 2013) Iowa Flood Studies period. The model performance in calculated streamflow varies approximately linearly with precipitation bias, demonstrating that the model successfully translated the level of precipitation quality to streamflow quality with better streamflow simulations from QPEs with less bias. Phase 2 of the North American Land Data Assimilation System (NLDAS-2) has the best streamflow results for the Iowa–Cedar River basin, with daily and monthly Nash–Sutcliffe coefficients and mean annual bias of 0.81, 0.88, and −2.1%, respectively, for the long-term period. The evaluation also indicates that a further adjustment of NLDAS-2 to form the best precipitation estimation should consider spatial–temporal distribution of bias. The satellite-only products have lower performance (peak and timing) than other products, while simple bias adjustment can intermediately improve the quality of simulated streamflow. The TMPA research product (TMPA-RP; research-quality data) can generate results approaching those of the ground-based products with only monthly gauge-based adjustment to the TMPA real-time product (TMPA-RT; near-real-time data). It is further noted that the streamflow bias is strongly correlated to precipitation bias at various time scales, though other factors may play a role as well, especially on the daily time scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Evaluation of Quantitative Precipitation Estimations through Hydrological Modeling in IFloodS River Basins

Loading next page...
 
/lp/ams/evaluation-of-quantitative-precipitation-estimations-through-QlBK4F8VuM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-15-0149.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA multiple-product-driven hydrologic modeling framework (MMF) is utilized for evaluation of quantitative precipitation estimation (QPE) products, motivated by improving the utility of satellite QPE in global flood modeling. This work addresses the challenge of objectively determining the relative value of various QPEs at river basin/subbasin scales. A reference precipitation dataset is created using a long-term water-balance approach with independent data sources. The intercomparison of nine QPEs and corresponding hydrologic simulations indicates that all products with long-term (2002–13) records have similar merits as over the short-term (April–June 2013) Iowa Flood Studies period. The model performance in calculated streamflow varies approximately linearly with precipitation bias, demonstrating that the model successfully translated the level of precipitation quality to streamflow quality with better streamflow simulations from QPEs with less bias. Phase 2 of the North American Land Data Assimilation System (NLDAS-2) has the best streamflow results for the Iowa–Cedar River basin, with daily and monthly Nash–Sutcliffe coefficients and mean annual bias of 0.81, 0.88, and −2.1%, respectively, for the long-term period. The evaluation also indicates that a further adjustment of NLDAS-2 to form the best precipitation estimation should consider spatial–temporal distribution of bias. The satellite-only products have lower performance (peak and timing) than other products, while simple bias adjustment can intermediately improve the quality of simulated streamflow. The TMPA research product (TMPA-RP; research-quality data) can generate results approaching those of the ground-based products with only monthly gauge-based adjustment to the TMPA real-time product (TMPA-RT; near-real-time data). It is further noted that the streamflow bias is strongly correlated to precipitation bias at various time scales, though other factors may play a role as well, especially on the daily time scale.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Feb 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial