Evaluation of NMC Upper-Stratospheric Temperature Analyses Using Rocketsonde and Lidar Data

Evaluation of NMC Upper-Stratospheric Temperature Analyses Using Rocketsonde and Lidar Data Daily NMC analyses, constructed from operational TOVS data since 1978, are used to monitor behavior of middle atmospheric temperature. Capability of the upper-stratospheric analyses (5,2,1, and 0.4 mb) to provide temporally consistent temperature fields depends on adjustments derived from ground-truth observations. These adjustments compensate for biases in the analyses caused by behavioral differences in data derived from successive operational satellite instruments and by changes in data and analysis procedures. This paper supports previous studies showing that observations from the datasonde rocket system provide ground-truth adjustments with a precision of 13C. The number of datasonde observations has diminished substantially in recent years, putting this adjustment system at risk. Falling-sphere rocket temperature data are shown to have variability in excess of that judged to be acceptable for use in the adjustment system.The capability for Rayleigh lidar to provide high-quality temperature data needed for ground truth is examined by comparing NMC analysis temperatures, adjusted by datasonde measurements, with observational values from regularly operating lidar systems in France since 1978. Agreement between the two databases is found to be good in recent years. This is further verified by comparisons between the datasonde-computed adjustments and independent analysis adjustments derived from the lidar database. It is concluded that high-quality lidar measurements, if made available from low, medium, and high latitudes, could provide the essential data for use in the analysis adjustment system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Evaluation of NMC Upper-Stratospheric Temperature Analyses Using Rocketsonde and Lidar Data

Loading next page...
 
/lp/ams/evaluation-of-nmc-upper-stratospheric-temperature-analyses-using-Yi00fHKq42
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1993)074<0789:EONUST>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Daily NMC analyses, constructed from operational TOVS data since 1978, are used to monitor behavior of middle atmospheric temperature. Capability of the upper-stratospheric analyses (5,2,1, and 0.4 mb) to provide temporally consistent temperature fields depends on adjustments derived from ground-truth observations. These adjustments compensate for biases in the analyses caused by behavioral differences in data derived from successive operational satellite instruments and by changes in data and analysis procedures. This paper supports previous studies showing that observations from the datasonde rocket system provide ground-truth adjustments with a precision of 13C. The number of datasonde observations has diminished substantially in recent years, putting this adjustment system at risk. Falling-sphere rocket temperature data are shown to have variability in excess of that judged to be acceptable for use in the adjustment system.The capability for Rayleigh lidar to provide high-quality temperature data needed for ground truth is examined by comparing NMC analysis temperatures, adjusted by datasonde measurements, with observational values from regularly operating lidar systems in France since 1978. Agreement between the two databases is found to be good in recent years. This is further verified by comparisons between the datasonde-computed adjustments and independent analysis adjustments derived from the lidar database. It is concluded that high-quality lidar measurements, if made available from low, medium, and high latitudes, could provide the essential data for use in the analysis adjustment system.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: May 1, 1993

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off