Evaluation of High-Resolution Gridded Precipitation Data in Arid and Semiarid Regions: Heihe River Basin, Northwest China

Evaluation of High-Resolution Gridded Precipitation Data in Arid and Semiarid Regions: Heihe... AbstractThe reliability of three satellite-derived precipitation products, Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 and the Climate Prediction Center morphing technique (CMORPH) satellite-only (CMORPH-RAW) and gauge-corrected versions (CMORPH-CRT), and three gauge-based precipitation datasets, Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE), National Climate Center of China Meteorological Administration (CN05.1), and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), is evaluated via comparisons with rain gauge observations from stations over the Heihe River basin (HRB) for the period from 1998 to 2012. The results show that the observed climatology, interannual variability, the detection of precipitation events, and probability density functions (PDFs) are reasonably well represented by the high-resolution precipitation products (HRPPs), with APHRODITE presenting the best performance, CN05.1 and ITPCAS exhibiting similar performances, and CMORPH-CRT showing a poor performance. The bias-correction algorithms applied in CMORPH-CRT improve the accuracy of CMORPH-RAW slightly but fail to improve the rainfall detection skill. TRMM consistently outperforms CMORPH-CRT at various scales, whereas CMORPH-CRT is comparable to TRMM in summer. The spatial correlations, normalized root-mean-square error (NRMSE), and probability of detection (POD) show that all datasets perform better in summer than in winter. Except for CMORPH-RAW, the HRPPs could adequately reproduce the unimodal characteristics of annual cycle, although they overestimate the magnitude of the warm season precipitation. The HRPPs could capture the overall spatial distribution and decadal trend of extreme precipitation indices. However, the satellite-derived products overestimate the wet day precipitation and underestimate the consecutive dry days, although the TRMM generates relatively better results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Evaluation of High-Resolution Gridded Precipitation Data in Arid and Semiarid Regions: Heihe River Basin, Northwest China

Loading next page...
 
/lp/ams/evaluation-of-high-resolution-gridded-precipitation-data-in-arid-and-22XeA1B5Yq
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0252.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe reliability of three satellite-derived precipitation products, Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 and the Climate Prediction Center morphing technique (CMORPH) satellite-only (CMORPH-RAW) and gauge-corrected versions (CMORPH-CRT), and three gauge-based precipitation datasets, Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE), National Climate Center of China Meteorological Administration (CN05.1), and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), is evaluated via comparisons with rain gauge observations from stations over the Heihe River basin (HRB) for the period from 1998 to 2012. The results show that the observed climatology, interannual variability, the detection of precipitation events, and probability density functions (PDFs) are reasonably well represented by the high-resolution precipitation products (HRPPs), with APHRODITE presenting the best performance, CN05.1 and ITPCAS exhibiting similar performances, and CMORPH-CRT showing a poor performance. The bias-correction algorithms applied in CMORPH-CRT improve the accuracy of CMORPH-RAW slightly but fail to improve the rainfall detection skill. TRMM consistently outperforms CMORPH-CRT at various scales, whereas CMORPH-CRT is comparable to TRMM in summer. The spatial correlations, normalized root-mean-square error (NRMSE), and probability of detection (POD) show that all datasets perform better in summer than in winter. Except for CMORPH-RAW, the HRPPs could adequately reproduce the unimodal characteristics of annual cycle, although they overestimate the magnitude of the warm season precipitation. The HRPPs could capture the overall spatial distribution and decadal trend of extreme precipitation indices. However, the satellite-derived products overestimate the wet day precipitation and underestimate the consecutive dry days, although the TRMM generates relatively better results.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Dec 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off