Evaluation of Accuracy of Chinese AMDAR Data for 2015

Evaluation of Accuracy of Chinese AMDAR Data for 2015 AbstractTwo comparative studies have been performed to evaluate the accuracy of Chinese Aircraft Meteorological Data Relay (AMDAR) weather reports. The comparison between AMDAR reports and radiosonde observations shows that the root-mean-square differences (RMSDs) in temperature, wind speed, and wind direction are 1.06°C, 1.95 m s−1, and 22°, respectively, within a spatial range of ≤20 km and a temporal window of ≤15 min. The comparison between AMDAR reports collected by different aircraft reveals that observation uncertainties in temperature, wind speed, and wind direction are 0.59°C, 0.90 m s−1, and 12°, respectively. The spatial and temporal representativeness as well as the environmental factors that may affect the evaluation results are also discussed in detail in the two comparative studies. The results of the present study provide valuable information on and high confidence in the application of Chinese AMDAR in numerical weather prediction models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Evaluation of Accuracy of Chinese AMDAR Data for 2015

Loading next page...
 
/lp/ams/evaluation-of-accuracy-of-chinese-amdar-data-for-2015-bryhClYUDN
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0095.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTwo comparative studies have been performed to evaluate the accuracy of Chinese Aircraft Meteorological Data Relay (AMDAR) weather reports. The comparison between AMDAR reports and radiosonde observations shows that the root-mean-square differences (RMSDs) in temperature, wind speed, and wind direction are 1.06°C, 1.95 m s−1, and 22°, respectively, within a spatial range of ≤20 km and a temporal window of ≤15 min. The comparison between AMDAR reports collected by different aircraft reveals that observation uncertainties in temperature, wind speed, and wind direction are 0.59°C, 0.90 m s−1, and 12°, respectively. The spatial and temporal representativeness as well as the environmental factors that may affect the evaluation results are also discussed in detail in the two comparative studies. The results of the present study provide valuable information on and high confidence in the application of Chinese AMDAR in numerical weather prediction models.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: May 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off