Evaluating Outer Tropical Cyclone Size in Reanalysis Datasets using QuikSCAT Data

Evaluating Outer Tropical Cyclone Size in Reanalysis Datasets using QuikSCAT Data AbstractThe present study examines the fidelity of outer tropical cyclone (TC) size and wind field structure in four atmospheric reanalysis datasets to evaluate whether reanalyses can be used to derive a long-term TC size data set. Specifically, the precision and accuracy of reanalysis TC size for the North Atlantic (NA) and western North Pacific (WNP) basins are analyzed through comparison with a recently developed QuikSCAT TC size dataset (2000–2009). Both outer TC size and structure in reanalyses closely match QuikSCAT data as revealed by strong correlations, similar standard deviations, and generally small biases. Of the TC size metrics examined, the radii of 6–8 m s−1 winds in the NA and radii of 6–10 m s−1 winds in the WNP are generally most comparable to QuikSCAT data. Compared to WNP TCs, NA TC size and structure are represented with greater fidelity. Among the four reanalyses examined, the National Centers for Environmental Prediction Climate Forecast System Reanalysis and the Japanese Meteorological Agency Japanese 55-yr Re-Analysis represent TC size and structure with the greatest fidelity for both basins. Differences between reanalyses and QuikSCAT TC size increase with increasing QuikSCAT TC size in both basins and with decreasing TC latitude in the WNP. Finally, comparison of the distribution of reanalysis TC size during the satellite era with the distribution of QuikSCAT TC size suggests that reanalysis TC size is represented with reasonable fidelity throughout the satellite era and, thus, may be useful for constructing a multidecadal TC size dataset. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Evaluating Outer Tropical Cyclone Size in Reanalysis Datasets using QuikSCAT Data

Loading next page...
 
/lp/ams/evaluating-outer-tropical-cyclone-size-in-reanalysis-datasets-using-50s5VpEFUQ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0122.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe present study examines the fidelity of outer tropical cyclone (TC) size and wind field structure in four atmospheric reanalysis datasets to evaluate whether reanalyses can be used to derive a long-term TC size data set. Specifically, the precision and accuracy of reanalysis TC size for the North Atlantic (NA) and western North Pacific (WNP) basins are analyzed through comparison with a recently developed QuikSCAT TC size dataset (2000–2009). Both outer TC size and structure in reanalyses closely match QuikSCAT data as revealed by strong correlations, similar standard deviations, and generally small biases. Of the TC size metrics examined, the radii of 6–8 m s−1 winds in the NA and radii of 6–10 m s−1 winds in the WNP are generally most comparable to QuikSCAT data. Compared to WNP TCs, NA TC size and structure are represented with greater fidelity. Among the four reanalyses examined, the National Centers for Environmental Prediction Climate Forecast System Reanalysis and the Japanese Meteorological Agency Japanese 55-yr Re-Analysis represent TC size and structure with the greatest fidelity for both basins. Differences between reanalyses and QuikSCAT TC size increase with increasing QuikSCAT TC size in both basins and with decreasing TC latitude in the WNP. Finally, comparison of the distribution of reanalysis TC size during the satellite era with the distribution of QuikSCAT TC size suggests that reanalysis TC size is represented with reasonable fidelity throughout the satellite era and, thus, may be useful for constructing a multidecadal TC size dataset.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jul 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off