Estimation of Near-Real-Time Outgoing Longwave Radiation from Cross-Track Infrared Sounder (CrIS) Radiance Measurements

Estimation of Near-Real-Time Outgoing Longwave Radiation from Cross-Track Infrared Sounder (CrIS)... AbstractThis study describes the algorithm for deriving near-real-time outgoing longwave radiation (OLR) from Cross-Track Infrared Sounder (CrIS) hyperspectral infrared sounder radiance measurements. The estimation of OLR on a near-real-time basis provides a unique perspective for studying the variability of Earth’s current atmospheric radiation budget. CrIS-derived OLR values are estimated as a weighted linear combination of CrIS-adjusted “pseudochannel” radiances. The algorithm uses the Atmospheric Infrared Sounder (AIRS) as the transfer instrument, and a least squares regression algorithm is applied to generate two sets of regression coefficients. The first set of regression coefficients is derived from collocated Clouds and the Earth’s Radiant Energy System (CERES) OLR on Aqua and pseudochannel radiances calculated from AIRS radiances. The second set of coefficients is derived to adjust the CrIS pseudochannel radiance to account for the differences in pseudochannel radiances between AIRS and CrIS. The CrIS-derived OLR is then validated by using a limited set of available CERES SNPP OLR observations over 1° × 1° global grids, as well as monthly OLR mean and interannual differences against CERES OLR datasets from SNPP and Aqua. The results show that the bias of global CrIS OLR estimation is within ±2 W m−2 and that the standard deviation is within 5 W m−2 for all conditions, and ±1 and 3 W m−2 for homogeneous scenes. The interannual CrIS-derived OLR differences agree well with Aqua CERES interannual OLR differences on a 1° × 1° spatial scale, with only a small drift of the global mean of these two datasets of around 0.004 W m−2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Estimation of Near-Real-Time Outgoing Longwave Radiation from Cross-Track Infrared Sounder (CrIS) Radiance Measurements

Loading next page...
 
/lp/ams/estimation-of-near-real-time-outgoing-longwave-radiation-from-cross-S7mnxMFenM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-15-0238.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study describes the algorithm for deriving near-real-time outgoing longwave radiation (OLR) from Cross-Track Infrared Sounder (CrIS) hyperspectral infrared sounder radiance measurements. The estimation of OLR on a near-real-time basis provides a unique perspective for studying the variability of Earth’s current atmospheric radiation budget. CrIS-derived OLR values are estimated as a weighted linear combination of CrIS-adjusted “pseudochannel” radiances. The algorithm uses the Atmospheric Infrared Sounder (AIRS) as the transfer instrument, and a least squares regression algorithm is applied to generate two sets of regression coefficients. The first set of regression coefficients is derived from collocated Clouds and the Earth’s Radiant Energy System (CERES) OLR on Aqua and pseudochannel radiances calculated from AIRS radiances. The second set of coefficients is derived to adjust the CrIS pseudochannel radiance to account for the differences in pseudochannel radiances between AIRS and CrIS. The CrIS-derived OLR is then validated by using a limited set of available CERES SNPP OLR observations over 1° × 1° global grids, as well as monthly OLR mean and interannual differences against CERES OLR datasets from SNPP and Aqua. The results show that the bias of global CrIS OLR estimation is within ±2 W m−2 and that the standard deviation is within 5 W m−2 for all conditions, and ±1 and 3 W m−2 for homogeneous scenes. The interannual CrIS-derived OLR differences agree well with Aqua CERES interannual OLR differences on a 1° × 1° spatial scale, with only a small drift of the global mean of these two datasets of around 0.004 W m−2.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Mar 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off