Estimating River Bathymetry from Surface Velocity Observations Using Variational Inverse Modeling

Estimating River Bathymetry from Surface Velocity Observations Using Variational Inverse Modeling AbstractAccurate river bathymetry characterization is important to understanding all aspects of the riparian environment and provides crucial information for ensuring the safe passage of vessels and guiding channel maintenance operations. Verified models based on readily collected physical data facilitate accurate predictions of changes to a riverbed caused by traffic, weather, and other influences. This paper presents a methodology for estimating river bathymetry from surface velocity data by applying variational inverse modeling to the shallow-water equations. The paper describes the mathematical framework for the methodology and the algorithm, and the numerical tools developed to test the methodology. The hydrodynamic modeling uses 2D depth-averaged solvers (under the hydrostatic assumption) and applies a standard empirical correlation that relates depth-averaged velocity to surface velocity. The application of the bathymetry estimation algorithm to water-surface velocity data was tested on a 95-km reach of the Columbia River in Washington State. The root-mean-square error (RMSE) of the estimated bathymetry field relative to the ground truth data is approximately 2 m over the entire reach. The results of the test case indicate that this approach can be used to estimate river bathymetry to a close approximation based on the bank-to-bank surface velocity data on the reach of interest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Estimating River Bathymetry from Surface Velocity Observations Using Variational Inverse Modeling

Loading next page...
 
/lp/ams/estimating-river-bathymetry-from-surface-velocity-observations-using-W2UdU40obR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0075.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAccurate river bathymetry characterization is important to understanding all aspects of the riparian environment and provides crucial information for ensuring the safe passage of vessels and guiding channel maintenance operations. Verified models based on readily collected physical data facilitate accurate predictions of changes to a riverbed caused by traffic, weather, and other influences. This paper presents a methodology for estimating river bathymetry from surface velocity data by applying variational inverse modeling to the shallow-water equations. The paper describes the mathematical framework for the methodology and the algorithm, and the numerical tools developed to test the methodology. The hydrodynamic modeling uses 2D depth-averaged solvers (under the hydrostatic assumption) and applies a standard empirical correlation that relates depth-averaged velocity to surface velocity. The application of the bathymetry estimation algorithm to water-surface velocity data was tested on a 95-km reach of the Columbia River in Washington State. The root-mean-square error (RMSE) of the estimated bathymetry field relative to the ground truth data is approximately 2 m over the entire reach. The results of the test case indicate that this approach can be used to estimate river bathymetry to a close approximation based on the bank-to-bank surface velocity data on the reach of interest.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off