Estimating Random Uncertainty in Airborne Flux Measurements over Alaskan Tundra: Update on the Flux Fragment Method

Estimating Random Uncertainty in Airborne Flux Measurements over Alaskan Tundra: Update on the... AbstractAirborne turbulence measurement gives a spatial distribution of air–surface fluxes that networks of fixed surface sites typically cannot capture. Much work has improved the accuracy of such measurements and the estimation of the uncertainty peculiar to streams of turbulence data measured from the air. A particularly significant challenge and opportunity is to distinguish fluxes from different surface types, especially those occurring in patches smaller than the necessary averaging length. The flux fragment method (FFM), a conditional-sampling variant of eddy covariance in the space–time domain, was presented in 2008. It was shown capable of segregating the mean flux density (CO2, H2O, sensible heat) in maize from that in soybeans over the patchwork farmlands of Illinois. This was, however, an ideal surface for the method, and the random-error estimate used a relatively rudimentary bootstrap resampling. The present paper describes an upgraded random-error estimate that accounts for the serial correlation of the time/space series and the heterogeneity of the signal. Results are presented from the Alaskan tundra. Though recognized as important, systematic error estimates are not covered in this paper. Some discussion is offered on the relation of the FFM to other approaches similarly motivated, particularly those using wavelets. Successful measurement of the variation of air–surface exchange over heterogeneous surfaces has value for developing and improving process models relating surface flux to remotely sensible quantities, such as the vegetative land-cover type and its condition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Estimating Random Uncertainty in Airborne Flux Measurements over Alaskan Tundra: Update on the Flux Fragment Method

Loading next page...
 
/lp/ams/estimating-random-uncertainty-in-airborne-flux-measurements-over-R2r5dPYKc0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0187.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAirborne turbulence measurement gives a spatial distribution of air–surface fluxes that networks of fixed surface sites typically cannot capture. Much work has improved the accuracy of such measurements and the estimation of the uncertainty peculiar to streams of turbulence data measured from the air. A particularly significant challenge and opportunity is to distinguish fluxes from different surface types, especially those occurring in patches smaller than the necessary averaging length. The flux fragment method (FFM), a conditional-sampling variant of eddy covariance in the space–time domain, was presented in 2008. It was shown capable of segregating the mean flux density (CO2, H2O, sensible heat) in maize from that in soybeans over the patchwork farmlands of Illinois. This was, however, an ideal surface for the method, and the random-error estimate used a relatively rudimentary bootstrap resampling. The present paper describes an upgraded random-error estimate that accounts for the serial correlation of the time/space series and the heterogeneity of the signal. Results are presented from the Alaskan tundra. Though recognized as important, systematic error estimates are not covered in this paper. Some discussion is offered on the relation of the FFM to other approaches similarly motivated, particularly those using wavelets. Successful measurement of the variation of air–surface exchange over heterogeneous surfaces has value for developing and improving process models relating surface flux to remotely sensible quantities, such as the vegetative land-cover type and its condition.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Aug 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off