Estimating Climatic-Scale Precipitation from Space: A Review

Estimating Climatic-Scale Precipitation from Space: A Review AbstractMeasurement of climatic-scale precipitation (defined here as averages over areas of >104 km2 and periods of five days or longer) is impractical for many areas of the earth without the use of space-based observations. We briefly discuss the history of satellite rainfall estimation schemes and their application to climate studies. Two approachesdirect and indirecthave dominated work until very recently, when attempts to use more integrated techniques began. Indirect schemes, primarily based on visible and infrared (IR) observations of the characteristics of clouds, have been used in the majority of such studies. Direct schemes, such as those that use microwave observations of raindrop-sized hydrometeors, have been limited by a relative lack of the required measurements. A large number of studies have used datasets not originally intended as precipitation estimates at all, such as the NOAA outgoing longwave radiation data, to produce estimates of very large scale rainfall. Current and prospective attempts to overcome some of the difficulties affecting climatic-scale precipitation estimation are described. The Global Precipitation Climatology Project will integrate data from surface obserations, geostationary IR sensors, and polar-orbiting microwave and IR sensors to produce near-global analyses of monthly rainfall. The proposed Tropical Rainfall Measuring Mission will use a single satellite with an instrument package that will make visible, IR, and microwave radiometric observations. The package will also include a precipitation radar. We discuss certain other proposed satellite missions and international programs and their contributions to the production of climatic-scale precipitation estimates. Finally, we propose the development of a global rainfall analysis system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Estimating Climatic-Scale Precipitation from Space: A Review

Loading next page...
 
/lp/ams/estimating-climatic-scale-precipitation-from-space-a-review-9exI6QtuZX
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

AbstractMeasurement of climatic-scale precipitation (defined here as averages over areas of >104 km2 and periods of five days or longer) is impractical for many areas of the earth without the use of space-based observations. We briefly discuss the history of satellite rainfall estimation schemes and their application to climate studies. Two approachesdirect and indirecthave dominated work until very recently, when attempts to use more integrated techniques began. Indirect schemes, primarily based on visible and infrared (IR) observations of the characteristics of clouds, have been used in the majority of such studies. Direct schemes, such as those that use microwave observations of raindrop-sized hydrometeors, have been limited by a relative lack of the required measurements. A large number of studies have used datasets not originally intended as precipitation estimates at all, such as the NOAA outgoing longwave radiation data, to produce estimates of very large scale rainfall. Current and prospective attempts to overcome some of the difficulties affecting climatic-scale precipitation estimation are described. The Global Precipitation Climatology Project will integrate data from surface obserations, geostationary IR sensors, and polar-orbiting microwave and IR sensors to produce near-global analyses of monthly rainfall. The proposed Tropical Rainfall Measuring Mission will use a single satellite with an instrument package that will make visible, IR, and microwave radiometric observations. The package will also include a precipitation radar. We discuss certain other proposed satellite missions and international programs and their contributions to the production of climatic-scale precipitation estimates. Finally, we propose the development of a global rainfall analysis system.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 28, 1989

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial