Ensemble Averaging and the Curse of Dimensionality

Ensemble Averaging and the Curse of Dimensionality AbstractWhen comparing climate models to observations, it is often observed that the mean over many models has smaller errors than most or all of the individual models. This paper will show that a general consequence of the nonintuitive geometric properties of high-dimensional spaces is that the ensemble mean often outperforms the individual ensemble members. This also explains why the ensemble mean often has an error that is 30% smaller than the median error of the individual ensemble members. The only assumption that needs to be made is that the observations and the models are independently drawn from the same distribution. An important and relevant property of high-dimensional spaces is that independent random vectors are almost always orthogonal. Furthermore, while the lengths of random vectors are large and almost equal, the ensemble mean is special, as it is located near the otherwise vacant center. The theory is first explained by an analysis of Gaussian- and uniformly distributed vectors in high-dimensional spaces. A subset of 17 models from the CMIP5 multimodel ensemble is then used to demonstrate the validity and robustness of the theory in realistic settings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Ensemble Averaging and the Curse of Dimensionality

Loading next page...
 
/lp/ams/ensemble-averaging-and-the-curse-of-dimensionality-CAfZ8HRbJb
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0197.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWhen comparing climate models to observations, it is often observed that the mean over many models has smaller errors than most or all of the individual models. This paper will show that a general consequence of the nonintuitive geometric properties of high-dimensional spaces is that the ensemble mean often outperforms the individual ensemble members. This also explains why the ensemble mean often has an error that is 30% smaller than the median error of the individual ensemble members. The only assumption that needs to be made is that the observations and the models are independently drawn from the same distribution. An important and relevant property of high-dimensional spaces is that independent random vectors are almost always orthogonal. Furthermore, while the lengths of random vectors are large and almost equal, the ensemble mean is special, as it is located near the otherwise vacant center. The theory is first explained by an analysis of Gaussian- and uniformly distributed vectors in high-dimensional spaces. A subset of 17 models from the CMIP5 multimodel ensemble is then used to demonstrate the validity and robustness of the theory in realistic settings.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Feb 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial