Enhanced Adaptive Inflation Algorithm for Ensemble Filters

Enhanced Adaptive Inflation Algorithm for Ensemble Filters AbstractSpatially and temporally varying adaptive inflation algorithms have been developed to combat the loss of variance during the forecast due to various model and sampling errors. The adaptive Bayesian scheme of Anderson uses available observations to update the Gaussian inflation distribution assigned for every state variable. The likelihood function of the inflation is computed using model-minus-data innovation statistics. A number of enhancements for this inflation scheme are proposed. To prevent excessive deflation, an inverse gamma distribution for the prior inflation is considered. A non-Gaussian distribution offers a flexible framework for the inflation variance to evolve during the update. The innovations are assumed random variables, and a correction term is added to the mode of the likelihood distribution such that the observed inflation is slightly larger. This modification improves the stability of the adaptive scheme by limiting the occurrence of negative and physically intolerable inflations. The enhanced scheme is compared to the original one in twin experiments using the Lorenz-63 model, the Lorenz-96 model, and an idealized, high-dimensional atmospheric model. Results show that the proposed enhancements are capable of generating accurate and consistent state estimates. Allowing moderate deflation is shown to be useful. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Enhanced Adaptive Inflation Algorithm for Ensemble Filters

Loading next page...
 
/lp/ams/enhanced-adaptive-inflation-algorithm-for-ensemble-filters-0xEf6kIdAJ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0187.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSpatially and temporally varying adaptive inflation algorithms have been developed to combat the loss of variance during the forecast due to various model and sampling errors. The adaptive Bayesian scheme of Anderson uses available observations to update the Gaussian inflation distribution assigned for every state variable. The likelihood function of the inflation is computed using model-minus-data innovation statistics. A number of enhancements for this inflation scheme are proposed. To prevent excessive deflation, an inverse gamma distribution for the prior inflation is considered. A non-Gaussian distribution offers a flexible framework for the inflation variance to evolve during the update. The innovations are assumed random variables, and a correction term is added to the mode of the likelihood distribution such that the observed inflation is slightly larger. This modification improves the stability of the adaptive scheme by limiting the occurrence of negative and physically intolerable inflations. The enhanced scheme is compared to the original one in twin experiments using the Lorenz-63 model, the Lorenz-96 model, and an idealized, high-dimensional atmospheric model. Results show that the proposed enhancements are capable of generating accurate and consistent state estimates. Allowing moderate deflation is shown to be useful.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Feb 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off