Eddy Sensitivity to Jet Characteristics

Eddy Sensitivity to Jet Characteristics AbstractThe atmosphere exhibits two distinct types of jets: the thermally driven subtropical jet and the more poleward eddy-driven jet. Depending on location and season, these jets are often merged or separated, and their position, structure, and intensity strongly influence the eddy fields. Here, the authors study the sensitivity of eddies to changes in the jets’ amplitudes and positions in an idealized general circulation model. A modified Newtonian relaxation scheme that has a very short relaxation time for the mean state and a long relaxation time for eddies is used. This scheme makes it possible to obtain any zonally symmetric temperature distribution and is used to systematically modify the jets’ amplitudes and locations. It is found that eddies are more sensitive to changes in the amplitude of the eddy-driven jet than to changes in the amplitude of the subtropical jet. Furthermore, when the eddy-driven jet is shifted poleward, eddies tend to intensify. These results are tested for robustness in two different reference simulations: one resembling a situation where the subtropical and eddy-driven jets are nearly merged and one when they are separated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Eddy Sensitivity to Jet Characteristics

Loading next page...
 
/lp/ams/eddy-sensitivity-to-jet-characteristics-DdesSA12CD
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0139.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe atmosphere exhibits two distinct types of jets: the thermally driven subtropical jet and the more poleward eddy-driven jet. Depending on location and season, these jets are often merged or separated, and their position, structure, and intensity strongly influence the eddy fields. Here, the authors study the sensitivity of eddies to changes in the jets’ amplitudes and positions in an idealized general circulation model. A modified Newtonian relaxation scheme that has a very short relaxation time for the mean state and a long relaxation time for eddies is used. This scheme makes it possible to obtain any zonally symmetric temperature distribution and is used to systematically modify the jets’ amplitudes and locations. It is found that eddies are more sensitive to changes in the amplitude of the eddy-driven jet than to changes in the amplitude of the subtropical jet. Furthermore, when the eddy-driven jet is shifted poleward, eddies tend to intensify. These results are tested for robustness in two different reference simulations: one resembling a situation where the subtropical and eddy-driven jets are nearly merged and one when they are separated.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: May 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off