Dynamical Seasonal Prediction

Dynamical Seasonal Prediction Dynamical Seasonal Prediction (DSP) is an informally coordinated multi-institution research project to investigate the predictability of seasonal mean atmospheric circulation and rainfall. The basic idea is to test the feasibility of extending the technology of routine numerical weather prediction beyond the inherent limit of deterministic predictability of weather to produce numerical climate predictions using state-of-the-art global atmospheric models. Atmospheric general circulation models (AGCMs) either forced by predicted sea surface temperature (SST) or as part of a coupled forecast system have shown in the past that certain regions of the extratropics, in particular, the PacificNorth America (PNA) region during Northern Hemisphere winter, can be predicted with significant skill especially during years of large tropical SST anomalies. However, there is still a great deal of uncertainty about how much the details of various AGCMs impact conclusions about extratropical seasonal prediction and predictability.DSP is designed to compare seasonal simulation and prediction results from five state-of-the-art U.S. modeling groups (NCAR, COLA, GSFC, GFDL, NCEP) in order to assess which aspects of the results are robust and which are model dependent. The initial emphasis is on the predictability of seasonal anomalies over the PNA region. This paper also includes results from the ECMWF model, and historical forecast skill over both the PNA region and the European region is presented for all six models.It is found that with specified SST boundary conditions, all models show that the winter season mean circulation anomalies over the PacificNorth American region are highly predictable during years of large tropical sea surface temperature anomalies. The influence of large anomalous boundary conditions is so strong and so reproducible that the seasonal mean forecasts can be given with a high degree of confidence. However, the degree of reproducibility is highly variable from one model to the other, and quantities such as the PNA region signal to noise ratio are found to vary significantly between the different AGCMs. It would not be possible to make reliable estimates of predictability of the seasonal mean atmosphere circulation unless causes for such large differences among models are understood. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/dynamical-seasonal-prediction-NvNke12wAT
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2000)081<2593:DSP>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

Dynamical Seasonal Prediction (DSP) is an informally coordinated multi-institution research project to investigate the predictability of seasonal mean atmospheric circulation and rainfall. The basic idea is to test the feasibility of extending the technology of routine numerical weather prediction beyond the inherent limit of deterministic predictability of weather to produce numerical climate predictions using state-of-the-art global atmospheric models. Atmospheric general circulation models (AGCMs) either forced by predicted sea surface temperature (SST) or as part of a coupled forecast system have shown in the past that certain regions of the extratropics, in particular, the PacificNorth America (PNA) region during Northern Hemisphere winter, can be predicted with significant skill especially during years of large tropical SST anomalies. However, there is still a great deal of uncertainty about how much the details of various AGCMs impact conclusions about extratropical seasonal prediction and predictability.DSP is designed to compare seasonal simulation and prediction results from five state-of-the-art U.S. modeling groups (NCAR, COLA, GSFC, GFDL, NCEP) in order to assess which aspects of the results are robust and which are model dependent. The initial emphasis is on the predictability of seasonal anomalies over the PNA region. This paper also includes results from the ECMWF model, and historical forecast skill over both the PNA region and the European region is presented for all six models.It is found that with specified SST boundary conditions, all models show that the winter season mean circulation anomalies over the PacificNorth American region are highly predictable during years of large tropical sea surface temperature anomalies. The influence of large anomalous boundary conditions is so strong and so reproducible that the seasonal mean forecasts can be given with a high degree of confidence. However, the degree of reproducibility is highly variable from one model to the other, and quantities such as the PNA region signal to noise ratio are found to vary significantly between the different AGCMs. It would not be possible to make reliable estimates of predictability of the seasonal mean atmosphere circulation unless causes for such large differences among models are understood.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Nov 3, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off