Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dynamical Links between the Decadal Variability of the Oyashio and Kuroshio Extensions

Dynamical Links between the Decadal Variability of the Oyashio and Kuroshio Extensions AbstractRather than a single and continuous boundary current outflow, long-term satellite observations reveal that the Oyashio Extension (OE) in the North Pacific Subarctic Gyre comprises two independent, northeast–southwest-slanted front systems. With a mean latitude along 40°N, the western OE front exists primarily west of 153°E and is a continuation of the subarctic gyre western boundary current. The eastern OE front, also appearing along 40°N, is located between 153° and 170°E, whose entity is disconnected from its western counterpart. During 1982–2016, both of the OE fronts exhibit prominent decadal fluctuations, although their signals show little contemporaneous correlation. An upper-ocean temperature budget analysis based on the Estimating the Circulation and Climate of the Ocean, phase II (ECCO2), state estimate reveals that the advective temperature flux convergence plays a critical role in determining the low-frequency temperature changes relating to the OE fronts. Specifically, the western OE front variability is controlled by the decadal mesoscale eddy modulations in the upstream Kuroshio Extension (KE). An enhanced eddy activity increases the poleward heat transport and works to strengthen the western OE front. The eastern OE front variability, on the other hand, is dictated by both the meridional shift of the KE position and the circulation intensity change immediately north of the eastern OE. Different baroclinic adjustment speeds for the KE and OE are found to cause the in-phase changes between these latter two processes. Lack of contemporaneous correlation between the decadal western and eastern OE variability is found to be related to the interaction of the meridionally migrating KE jet with the Shatsky Rise near 159°E. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Dynamical Links between the Decadal Variability of the Oyashio and Kuroshio Extensions

Journal of Climate , Volume 30 (23): 15 – Dec 9, 2017

Loading next page...
1
 
/lp/ams/dynamical-links-between-the-decadal-variability-of-the-oyashio-and-Uvppp7S23U

References (62)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
DOI
10.1175/JCLI-D-17-0397.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRather than a single and continuous boundary current outflow, long-term satellite observations reveal that the Oyashio Extension (OE) in the North Pacific Subarctic Gyre comprises two independent, northeast–southwest-slanted front systems. With a mean latitude along 40°N, the western OE front exists primarily west of 153°E and is a continuation of the subarctic gyre western boundary current. The eastern OE front, also appearing along 40°N, is located between 153° and 170°E, whose entity is disconnected from its western counterpart. During 1982–2016, both of the OE fronts exhibit prominent decadal fluctuations, although their signals show little contemporaneous correlation. An upper-ocean temperature budget analysis based on the Estimating the Circulation and Climate of the Ocean, phase II (ECCO2), state estimate reveals that the advective temperature flux convergence plays a critical role in determining the low-frequency temperature changes relating to the OE fronts. Specifically, the western OE front variability is controlled by the decadal mesoscale eddy modulations in the upstream Kuroshio Extension (KE). An enhanced eddy activity increases the poleward heat transport and works to strengthen the western OE front. The eastern OE front variability, on the other hand, is dictated by both the meridional shift of the KE position and the circulation intensity change immediately north of the eastern OE. Different baroclinic adjustment speeds for the KE and OE are found to cause the in-phase changes between these latter two processes. Lack of contemporaneous correlation between the decadal western and eastern OE variability is found to be related to the interaction of the meridionally migrating KE jet with the Shatsky Rise near 159°E.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Dec 9, 2017

There are no references for this article.