Dual-Polarization Radar Rainfall Estimation over Tropical Oceans

Dual-Polarization Radar Rainfall Estimation over Tropical Oceans AbstractDual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convection, tropical oceanic Zdr and Kdp values were more often of low magnitude (<0.5 dB, <0.3° km−1) and Zdr was lower for a given Kdp or Zh, consistent with observations of tropical oceanic DSDs being dominated by numerous, small, less-oblate drops. New X-, C-, and S-band R estimators were derived: R(Kdp), R(Ah), R(Kdp, ζdr), R(z, ζdr), and R(Ah, ζdr), which use linear versions of Zdr and Zh, namely ζdr and z. Except for R(Kdp), convective/stratiform partitioning was unnecessary for these estimators. All dual-polarization estimators outperformed updated R(z) estimators derived from the same dataset. The best-performing estimator was R(Kdp, ζdr), followed by R(Ah, ζdr) and R(z, ζdr). The R error was further reduced in an updated blended algorithm choosing between R(z), R(z, ζdr), R(Kdp), and R(Kdp, ζdr) depending on Zdr > 0.25 dB and Kdp > 0.3° km−1 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all wavelengths, R(z) was still needed 43% of the time during light rain (R < 5 mm h−1, Zdr < 0.25 dB), composing 7% of the total rain volume. As wavelength decreased, R(Kdp, ζdr) was used more often, R(z, ζdr) was used less often, and the blended algorithm became increasingly more accurate than R(z). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Dual-Polarization Radar Rainfall Estimation over Tropical Oceans

Loading next page...
 
/lp/ams/dual-polarization-radar-rainfall-estimation-over-tropical-oceans-sDI5CWa7iT
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0160.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convection, tropical oceanic Zdr and Kdp values were more often of low magnitude (<0.5 dB, <0.3° km−1) and Zdr was lower for a given Kdp or Zh, consistent with observations of tropical oceanic DSDs being dominated by numerous, small, less-oblate drops. New X-, C-, and S-band R estimators were derived: R(Kdp), R(Ah), R(Kdp, ζdr), R(z, ζdr), and R(Ah, ζdr), which use linear versions of Zdr and Zh, namely ζdr and z. Except for R(Kdp), convective/stratiform partitioning was unnecessary for these estimators. All dual-polarization estimators outperformed updated R(z) estimators derived from the same dataset. The best-performing estimator was R(Kdp, ζdr), followed by R(Ah, ζdr) and R(z, ζdr). The R error was further reduced in an updated blended algorithm choosing between R(z), R(z, ζdr), R(Kdp), and R(Kdp, ζdr) depending on Zdr > 0.25 dB and Kdp > 0.3° km−1 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all wavelengths, R(z) was still needed 43% of the time during light rain (R < 5 mm h−1, Zdr < 0.25 dB), composing 7% of the total rain volume. As wavelength decreased, R(Kdp, ζdr) was used more often, R(z, ζdr) was used less often, and the blended algorithm became increasingly more accurate than R(z).

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off