Dual-Doppler Lidar Measurements for Improving Dispersion Models

Dual-Doppler Lidar Measurements for Improving Dispersion Models Dispersion of pollutants in the urban atmosphere is a subject that is presently under much investigation. In this paper the variables used in turbulent dispersion and plume rise schemes of the Met Office Nuclear Accident Model (NAME) are discussed. Those parameters that can be measured by Doppler lidar are emphasized. Information derived from simultaneous measurements from two Doppler lidars are presented, using methodologies not tried previously, with the aim of improving the forecasting of urban pollution dispersion. The results demonstrate how Doppler lidars can be used as measuring tools for the specific parameters needed within urban dispersion models. A procedure used for carrying out the dual-lidar measurements is outlined. This research shows how dual-lidar measurements can be used to calculate the relevant dispersion parameters, and compares the dual-lidar measurements with model calculations in a case study. Differences between model parameters and lidar observations are discussed. Dual-Doppler lidar data are extremely useful for measuring turbulence profiles within the part of the atmospheric boundary layer that is inaccessible using traditional methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/dual-doppler-lidar-measurements-for-improving-dispersion-models-WbYxPzlvmX
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-86-6-825
Publisher site
See Article on Publisher Site

Abstract

Dispersion of pollutants in the urban atmosphere is a subject that is presently under much investigation. In this paper the variables used in turbulent dispersion and plume rise schemes of the Met Office Nuclear Accident Model (NAME) are discussed. Those parameters that can be measured by Doppler lidar are emphasized. Information derived from simultaneous measurements from two Doppler lidars are presented, using methodologies not tried previously, with the aim of improving the forecasting of urban pollution dispersion. The results demonstrate how Doppler lidars can be used as measuring tools for the specific parameters needed within urban dispersion models. A procedure used for carrying out the dual-lidar measurements is outlined. This research shows how dual-lidar measurements can be used to calculate the relevant dispersion parameters, and compares the dual-lidar measurements with model calculations in a case study. Differences between model parameters and lidar observations are discussed. Dual-Doppler lidar data are extremely useful for measuring turbulence profiles within the part of the atmospheric boundary layer that is inaccessible using traditional methods.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 28, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off