Dry Intrusions: Lagrangian Climatology and Dynamical Impact on the Planetary Boundary Layer

Dry Intrusions: Lagrangian Climatology and Dynamical Impact on the Planetary Boundary Layer AbstractDry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Dry Intrusions: Lagrangian Climatology and Dynamical Impact on the Planetary Boundary Layer

Loading next page...
 
/lp/ams/dry-intrusions-lagrangian-climatology-and-dynamical-impact-on-the-jLNU0uU3Fh
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0782.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off