Drivers and Environmental Responses to the Changing Annual Snow Cycle of Northern Alaska

Drivers and Environmental Responses to the Changing Annual Snow Cycle of Northern Alaska AbstractLinkages between atmospheric, ecological, and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation, and cloud cover, and the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik owing mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-yr snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid-1970s (–2.86 days decade–1, 1975–2016). At nearby Cooper Island, where a colony of seabirds, black guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-yr record. Ice out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend toward later dates (+4.6 days decade–1, 1975–2016), with 2016 being the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales and to anticipate coupled environmental responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/drivers-and-environmental-responses-to-the-changing-annual-snow-cycle-rwQZz5pN1F
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
eISSN
1520-0477
D.O.I.
10.1175/BAMS-D-16-0201.1
Publisher site
See Article on Publisher Site

Abstract

AbstractLinkages between atmospheric, ecological, and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation, and cloud cover, and the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik owing mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-yr snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid-1970s (–2.86 days decade–1, 1975–2016). At nearby Cooper Island, where a colony of seabirds, black guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-yr record. Ice out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend toward later dates (+4.6 days decade–1, 1975–2016), with 2016 being the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales and to anticipate coupled environmental responses.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Dec 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off