Downward Wave Reflection as a Mechanism for the Stratosphere–Troposphere Response to the 11-Yr Solar Cycle

Downward Wave Reflection as a Mechanism for the Stratosphere–Troposphere Response to the 11-Yr... AbstractThe effects of solar activity on the stratospheric waveguides and downward reflection of planetary waves during NH early to midwinter are examined. Under high solar (HS) conditions, enhanced westerly winds in the subtropical upper stratosphere and the associated changes in the zonal wind curvature led to an altered waveguide geometry across the winter period in the upper stratosphere. In particular, the condition for barotropic instability was more frequently met at 1 hPa near the polar-night jet centered at about 55°N. In early winter, the corresponding change in wave forcing was characterized by a vertical dipole pattern of the Eliassen–Palm (E–P) flux divergent anomalies in the high-latitude upper stratosphere accompanied by poleward E–P flux anomalies. These wave forcing anomalies corresponded with negative vertical shear of zonal mean winds and the formation of a vertical reflecting surface. Enhanced downward E–P flux anomalies appeared below the negative shear zone; they coincided with more frequent occurrence of negative daily heat fluxes and were associated with eastward acceleration and downward group velocity. These downward-reflected wave anomalies had a detectable effect on the vertical structure of planetary waves during November–January. The associated changes in tropospheric geopotential height contributed to a more positive phase of the North Atlantic Oscillation in January and February. These results suggest that downward reflection may act as a “top down” pathway by which the effects of solar ultraviolet (UV) radiation in the upper stratosphere can be transmitted to the troposphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Downward Wave Reflection as a Mechanism for the Stratosphere–Troposphere Response to the 11-Yr Solar Cycle

Loading next page...
 
/lp/ams/downward-wave-reflection-as-a-mechanism-for-the-stratosphere-VWHEuFtRdy
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0400.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe effects of solar activity on the stratospheric waveguides and downward reflection of planetary waves during NH early to midwinter are examined. Under high solar (HS) conditions, enhanced westerly winds in the subtropical upper stratosphere and the associated changes in the zonal wind curvature led to an altered waveguide geometry across the winter period in the upper stratosphere. In particular, the condition for barotropic instability was more frequently met at 1 hPa near the polar-night jet centered at about 55°N. In early winter, the corresponding change in wave forcing was characterized by a vertical dipole pattern of the Eliassen–Palm (E–P) flux divergent anomalies in the high-latitude upper stratosphere accompanied by poleward E–P flux anomalies. These wave forcing anomalies corresponded with negative vertical shear of zonal mean winds and the formation of a vertical reflecting surface. Enhanced downward E–P flux anomalies appeared below the negative shear zone; they coincided with more frequent occurrence of negative daily heat fluxes and were associated with eastward acceleration and downward group velocity. These downward-reflected wave anomalies had a detectable effect on the vertical structure of planetary waves during November–January. The associated changes in tropospheric geopotential height contributed to a more positive phase of the North Atlantic Oscillation in January and February. These results suggest that downward reflection may act as a “top down” pathway by which the effects of solar ultraviolet (UV) radiation in the upper stratosphere can be transmitted to the troposphere.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off