Doppler Radar Analysis of the Rapid Intensification of Typhoon Goni (2015) After Eyewall Replacement

Doppler Radar Analysis of the Rapid Intensification of Typhoon Goni (2015) After Eyewall Replacement AbstractA ground-based Doppler radar observed the rapid intensification (RI) of Typhoon Goni (2015) for 24 h immediately after it completed an eyewall replacement cycle. Goni’s RI processes were examined by using radar reflectivity and wind fields retrieved by the ground-based velocity track display (GBVTD) technique. The maximum wind at 2-km altitude increased by 30 m s−1 during the first 6 h of RI, and it further increased by 20 m s−1 during the subsequent 12 h. Around the onset of RI, relatively strong outflow (>2 m s−1) was present both inside and outside the radius of maximum wind (RMW) above the boundary layer (BL), suggesting the existence of supergradient flow in and just above the BL. Despite this outflow, angular momentum increased inside the RMW. The low-level RMW contracted rapidly from 50 to 33 km, causing the RMW to slope greatly outward with height. The radius of maximum reflectivity was a few kilometers inside the RMW. A budget analysis of absolute angular momentum showed that the outflow contributed to contraction of the tangential wind field. During RI, eyewall convection was enhanced and a well-defined eye appeared. The low-level outflow changed into inflow immediately outside the RMW. Then the tangential wind field and high inertial stability region expanded radially outward, followed by the formation of an outer reflectivity maximum at twice the RMW. The contraction speed of the low-level RMW slowed down. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Doppler Radar Analysis of the Rapid Intensification of Typhoon Goni (2015) After Eyewall Replacement

Loading next page...
 
/lp/ams/doppler-radar-analysis-of-the-rapid-intensification-of-typhoon-goni-lvJwsvud0V
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0042.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA ground-based Doppler radar observed the rapid intensification (RI) of Typhoon Goni (2015) for 24 h immediately after it completed an eyewall replacement cycle. Goni’s RI processes were examined by using radar reflectivity and wind fields retrieved by the ground-based velocity track display (GBVTD) technique. The maximum wind at 2-km altitude increased by 30 m s−1 during the first 6 h of RI, and it further increased by 20 m s−1 during the subsequent 12 h. Around the onset of RI, relatively strong outflow (>2 m s−1) was present both inside and outside the radius of maximum wind (RMW) above the boundary layer (BL), suggesting the existence of supergradient flow in and just above the BL. Despite this outflow, angular momentum increased inside the RMW. The low-level RMW contracted rapidly from 50 to 33 km, causing the RMW to slope greatly outward with height. The radius of maximum reflectivity was a few kilometers inside the RMW. A budget analysis of absolute angular momentum showed that the outflow contributed to contraction of the tangential wind field. During RI, eyewall convection was enhanced and a well-defined eye appeared. The low-level outflow changed into inflow immediately outside the RMW. Then the tangential wind field and high inertial stability region expanded radially outward, followed by the formation of an outer reflectivity maximum at twice the RMW. The contraction speed of the low-level RMW slowed down.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Nov 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off