Does the Earth Have an Adaptive Infrared Iris?

Does the Earth Have an Adaptive Infrared Iris? Observations and analyses of water vapor and clouds in the Tropics over the past decade show that the boundary between regions of high and low free-tropospheric relative humidity is sharp, and that upper-level cirrus and high free-tropospheric relative humidity tend to coincide. Most current studies of atmospheric climate feedbacks have focused on such quantities as clear sky humidity, average humidity, or differences between regions of high and low humidity, but the data suggest that another possible feedback might consist of changes in the relative areas of high and low humidity and cloudiness. Motivated by the observed relation between cloudiness (above the trade wind boundary layer) and high humidity, cloud data for the eastern part of the western Pacific from the Japanese Geostationary Meteorological Satellite-5 (which provides high spatial and temporal resolution) have been analyzed, and it has been found that the area of cirrus cloud coverage normalized by a measure of the area of cumulus coverage decreases about 22 per degree Celsius increase in the surface temperature of the cloudy region. A number of possible interpretations of this result are examined and a plausible one is found to be that cirrus detrainment from cumulus convection diminishes with increasing temperature. The implications of such an effect for climate are examined using a simple two-dimensional radiativeconvective model. The calculations show that such a change in the Tropics could lead to a negative feedback in the global climate, with a feedback factor of about 1.1, which if correct, would more than cancel all the positive feedbacks in the more sensitive current climate models. Even if regions of high humidity were not coupled to cloudiness, the feedback factor due to the clouds alone would still amount to about 0.45, which would cancel model water vapor feedback in almost all models. This new mechanism would, in effect, constitute an adaptive infrared iris that opens and closes in order to control the Outgoing Longwave Radiation in response to changes in surface temperature in a manner similar to the way in which an eye's iris opens and closes in response to changing light levels. Not surprisingly, for upper-level clouds, their infrared effect dominates their shortwave effect. Preliminary attempts to replicate observations with GCMs suggest that models lack such a negative cloud/moist areal feedback. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Does the Earth Have an Adaptive Infrared Iris?

Loading next page...
 
/lp/ams/does-the-earth-have-an-adaptive-infrared-iris-Y20l0qw3Mw
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

Observations and analyses of water vapor and clouds in the Tropics over the past decade show that the boundary between regions of high and low free-tropospheric relative humidity is sharp, and that upper-level cirrus and high free-tropospheric relative humidity tend to coincide. Most current studies of atmospheric climate feedbacks have focused on such quantities as clear sky humidity, average humidity, or differences between regions of high and low humidity, but the data suggest that another possible feedback might consist of changes in the relative areas of high and low humidity and cloudiness. Motivated by the observed relation between cloudiness (above the trade wind boundary layer) and high humidity, cloud data for the eastern part of the western Pacific from the Japanese Geostationary Meteorological Satellite-5 (which provides high spatial and temporal resolution) have been analyzed, and it has been found that the area of cirrus cloud coverage normalized by a measure of the area of cumulus coverage decreases about 22 per degree Celsius increase in the surface temperature of the cloudy region. A number of possible interpretations of this result are examined and a plausible one is found to be that cirrus detrainment from cumulus convection diminishes with increasing temperature. The implications of such an effect for climate are examined using a simple two-dimensional radiativeconvective model. The calculations show that such a change in the Tropics could lead to a negative feedback in the global climate, with a feedback factor of about 1.1, which if correct, would more than cancel all the positive feedbacks in the more sensitive current climate models. Even if regions of high humidity were not coupled to cloudiness, the feedback factor due to the clouds alone would still amount to about 0.45, which would cancel model water vapor feedback in almost all models. This new mechanism would, in effect, constitute an adaptive infrared iris that opens and closes in order to control the Outgoing Longwave Radiation in response to changes in surface temperature in a manner similar to the way in which an eye's iris opens and closes in response to changing light levels. Not surprisingly, for upper-level clouds, their infrared effect dominates their shortwave effect. Preliminary attempts to replicate observations with GCMs suggest that models lack such a negative cloud/moist areal feedback.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Mar 29, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off