Distinct Influences of the ENSO-Like and PMM-Like SST Anomalies on the Mean TC Genesis Location in the Western North Pacific: The 2015 Summer as an Extreme Example

Distinct Influences of the ENSO-Like and PMM-Like SST Anomalies on the Mean TC Genesis Location... AbstractThis study reports the different effects of tropical and subtropical sea surface temperature anomalies (SSTAs) on the mean tropical cyclone (TC) genesis location in the western North Pacific (WNP), a TC–SSTA relationship that has been largely ignored. In the Pacific, the interannual variability of the tropical SSTA in the boreal summer is characterized by an El Niño–Southern Oscillation (ENSO)-like pattern, whereas the subtropical SSTA exhibits a Pacific meridional mode (PMM)-like structure. Partial correlation analysis reveals that the ENSO-like and PMM-like SSTAs dominate the south–north and east–west shift of mean TC genesis location, respectively. The 2015/16 El Niño was a strong event comparable with the 1997/98 event in terms of Niño-3.4 SSTA. However, the mean TC genesis location in the WNP during the summer of 2015 exhibited an unprecedented eastward shift by approximately 10 longitudinal degrees relative to that in 1997. Whereas the ENSO-like SSTAs in 1997 and 2015 were approximately equal, the amplitude of the PMM-like SSTA in 2015 was approximately twice as large as that in 1997. Numerical experiments forced by the ENSO-like and PMM-like SSTAs in June–August 2015 reveal that the positive PMM-like SSTA forces an east–west overturning circulation anomaly in the subtropical North Pacific with anomalously ascending (descending) motion in the subtropical central (western) Pacific. The mean TC genesis location in the WNP therefore shifts eastward when warmer SST occurs in the subtropical eastern Pacific. This finding supports the hypothesis that the extremely positive PMM-like SSTA in the summer of 2015 caused the unprecedented eastward shift of the TC genesis location in the WNP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Distinct Influences of the ENSO-Like and PMM-Like SST Anomalies on the Mean TC Genesis Location in the Western North Pacific: The 2015 Summer as an Extreme Example

Loading next page...
 
/lp/ams/distinct-influences-of-the-enso-like-and-pmm-like-sst-anomaly-on-the-1z0smk5wMB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0504.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study reports the different effects of tropical and subtropical sea surface temperature anomalies (SSTAs) on the mean tropical cyclone (TC) genesis location in the western North Pacific (WNP), a TC–SSTA relationship that has been largely ignored. In the Pacific, the interannual variability of the tropical SSTA in the boreal summer is characterized by an El Niño–Southern Oscillation (ENSO)-like pattern, whereas the subtropical SSTA exhibits a Pacific meridional mode (PMM)-like structure. Partial correlation analysis reveals that the ENSO-like and PMM-like SSTAs dominate the south–north and east–west shift of mean TC genesis location, respectively. The 2015/16 El Niño was a strong event comparable with the 1997/98 event in terms of Niño-3.4 SSTA. However, the mean TC genesis location in the WNP during the summer of 2015 exhibited an unprecedented eastward shift by approximately 10 longitudinal degrees relative to that in 1997. Whereas the ENSO-like SSTAs in 1997 and 2015 were approximately equal, the amplitude of the PMM-like SSTA in 2015 was approximately twice as large as that in 1997. Numerical experiments forced by the ENSO-like and PMM-like SSTAs in June–August 2015 reveal that the positive PMM-like SSTA forces an east–west overturning circulation anomaly in the subtropical North Pacific with anomalously ascending (descending) motion in the subtropical central (western) Pacific. The mean TC genesis location in the WNP therefore shifts eastward when warmer SST occurs in the subtropical eastern Pacific. This finding supports the hypothesis that the extremely positive PMM-like SSTA in the summer of 2015 caused the unprecedented eastward shift of the TC genesis location in the WNP.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off