Direct Assimilation of Radar Reflectivity without Tangent Linear and Adjoint of the Nonlinear Observation Operator in the GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003 Oklahoma City Tornadic Supercell

Direct Assimilation of Radar Reflectivity without Tangent Linear and Adjoint of the Nonlinear... AbstractA GSI-based EnVar data assimilation system is extended to directly assimilate radar reflectivity to initialize convective-scale forecasts. When hydrometeor mixing ratios are used as state variables (method mixing ratio), large differences of the cost function gradients with respect to the small hydrometeor mixing ratios and wind prevent efficient convergence. Using logarithmic mixing ratios as state variables (method logarithm) fixes this problem, but generates spuriously large hydrometeor increments partly due to the transform to and from the logarithmic space. The tangent linear of the reflectivity operators further contributes to spuriously small and large hydrometeor increments in method mixing ratio and method logarithm, respectively. A new method is proposed by directly adding the reflectivity as a state variable (method dBZ). Without the tangent linear and adjoint of the nonlinear operator, the new method therefore avoids the aforementioned problems.The newly proposed method is examined on the analysis and prediction of the 8 May 2003 Oklahoma City tornadic supercell storm. Both the probabilistic forecast of strong low-level vorticity and maintenance of strong updraft and vorticity in method dBZ are more consistent with reality than in method logarithm and method mixing ratio. Detailed diagnostics suggest that a more realistic cold pool due to the better analyzed hydrometeors in method dBZ than in other methods leads to constructive interaction between the surface gust front and the updraft aloft associated with the midlevel mesocyclone. Similar low-level vorticity forecast and maintenance of the storm are produced by the WSM6 and Thompson microphysics schemes in method dBZ. The Thompson scheme matches the reflectivity distribution with the observations better for all lead times, but shows more southeastward track bias compared to the WSM6 scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Direct Assimilation of Radar Reflectivity without Tangent Linear and Adjoint of the Nonlinear Observation Operator in the GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003 Oklahoma City Tornadic Supercell

Loading next page...
 
/lp/ams/direct-assimilation-of-radar-reflectivity-without-tangent-linear-and-CD9E8Pw2Ii
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0231.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA GSI-based EnVar data assimilation system is extended to directly assimilate radar reflectivity to initialize convective-scale forecasts. When hydrometeor mixing ratios are used as state variables (method mixing ratio), large differences of the cost function gradients with respect to the small hydrometeor mixing ratios and wind prevent efficient convergence. Using logarithmic mixing ratios as state variables (method logarithm) fixes this problem, but generates spuriously large hydrometeor increments partly due to the transform to and from the logarithmic space. The tangent linear of the reflectivity operators further contributes to spuriously small and large hydrometeor increments in method mixing ratio and method logarithm, respectively. A new method is proposed by directly adding the reflectivity as a state variable (method dBZ). Without the tangent linear and adjoint of the nonlinear operator, the new method therefore avoids the aforementioned problems.The newly proposed method is examined on the analysis and prediction of the 8 May 2003 Oklahoma City tornadic supercell storm. Both the probabilistic forecast of strong low-level vorticity and maintenance of strong updraft and vorticity in method dBZ are more consistent with reality than in method logarithm and method mixing ratio. Detailed diagnostics suggest that a more realistic cold pool due to the better analyzed hydrometeors in method dBZ than in other methods leads to constructive interaction between the surface gust front and the updraft aloft associated with the midlevel mesocyclone. Similar low-level vorticity forecast and maintenance of the storm are produced by the WSM6 and Thompson microphysics schemes in method dBZ. The Thompson scheme matches the reflectivity distribution with the observations better for all lead times, but shows more southeastward track bias compared to the WSM6 scheme.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Apr 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off