Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments

Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for... AbstractA hybrid ensemble-3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, ‘deterministic forecast’ EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar; the 1) serial versus global nature and 2) the variational minimization versus direct filter updating nature of the two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and En3DVar), optimal de-correlation scales (localization radii) for static (ensemble) background error covariances are obtained and used in hybrid En3DVar. The sensitivity of hybrid En3DVar to covariance weights and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5 to 10% static covariance gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall. Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water vapor mixing ratio qv (snow mixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar the worst, and static covariance only helps slightly via hybrid En3DVar. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments

Loading next page...
 
/lp/ams/development-of-a-hybrid-en3dvar-data-assimilation-system-and-PVKB01JlGg
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0164.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA hybrid ensemble-3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, ‘deterministic forecast’ EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar; the 1) serial versus global nature and 2) the variational minimization versus direct filter updating nature of the two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and En3DVar), optimal de-correlation scales (localization radii) for static (ensemble) background error covariances are obtained and used in hybrid En3DVar. The sensitivity of hybrid En3DVar to covariance weights and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5 to 10% static covariance gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall. Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water vapor mixing ratio qv (snow mixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar the worst, and static covariance only helps slightly via hybrid En3DVar.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial