Design and Verification of a New Monochromatic Thermal Emission Component for the I3RC Community Monte Carlo Model

Design and Verification of a New Monochromatic Thermal Emission Component for the I3RC Community... AbstractThe Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model has been extended to include a source of photon emission from the surface and atmosphere, thereby making it capable of simulating scalar radiative transfer in a 3D scattering, absorbing, and emitting domain with both internal and external sources. The theoretical basis, computational implementation, verification of the internal emission, and computational performance of the resulting model, the “IMC+emission,” is presented. Thorough verification includes fundamental tests of reciprocity and energy conservation, comparison to analytical solutions, and comparison with another 3D model, the Spherical Harmonics Discrete Ordinate Method (SHDOM). All comparisons to fundamental tests and analytical solutions are accurate to within the precision of the simulations—typically better than 0.05%. Comparison cases to SHDOM were typically within a few percent, except for flux divergence near cloud edges, where the effects of grid definition between the two models manifest themselves. Finally, the model is applied to the established I3RC case 4 cumulus cloud field to provide a benchmark result, and computational performance and strong and weak scaling metrics are presented. The outcome is a thoroughly vetted, publicly available, open-source benchmark tool to study 3D radiative transfer from either internal or external sources of radiation at wavelengths for which scattering, emission, and absorption are important. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Design and Verification of a New Monochromatic Thermal Emission Component for the I3RC Community Monte Carlo Model

Loading next page...
 
/lp/ams/design-and-verification-of-a-new-monochromatic-thermal-emission-Rweu53mpTq
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0251.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model has been extended to include a source of photon emission from the surface and atmosphere, thereby making it capable of simulating scalar radiative transfer in a 3D scattering, absorbing, and emitting domain with both internal and external sources. The theoretical basis, computational implementation, verification of the internal emission, and computational performance of the resulting model, the “IMC+emission,” is presented. Thorough verification includes fundamental tests of reciprocity and energy conservation, comparison to analytical solutions, and comparison with another 3D model, the Spherical Harmonics Discrete Ordinate Method (SHDOM). All comparisons to fundamental tests and analytical solutions are accurate to within the precision of the simulations—typically better than 0.05%. Comparison cases to SHDOM were typically within a few percent, except for flux divergence near cloud edges, where the effects of grid definition between the two models manifest themselves. Finally, the model is applied to the established I3RC case 4 cumulus cloud field to provide a benchmark result, and computational performance and strong and weak scaling metrics are presented. The outcome is a thoroughly vetted, publicly available, open-source benchmark tool to study 3D radiative transfer from either internal or external sources of radiation at wavelengths for which scattering, emission, and absorption are important.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off