Design and Verification of a New Monochromatic Thermal Emission Component for the I3RC Community Monte Carlo Model

Design and Verification of a New Monochromatic Thermal Emission Component for the I3RC Community... AbstractThe Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model has been extended to include a source of photon emission from the surface and atmosphere, thereby making it capable of simulating scalar radiative transfer in a 3D scattering, absorbing, and emitting domain with both internal and external sources. The theoretical basis, computational implementation, verification of the internal emission, and computational performance of the resulting model, the “IMC+emission,” is presented. Thorough verification includes fundamental tests of reciprocity and energy conservation, comparison to analytical solutions, and comparison with another 3D model, the Spherical Harmonics Discrete Ordinate Method (SHDOM). All comparisons to fundamental tests and analytical solutions are accurate to within the precision of the simulations—typically better than 0.05%. Comparison cases to SHDOM were typically within a few percent, except for flux divergence near cloud edges, where the effects of grid definition between the two models manifest themselves. Finally, the model is applied to the established I3RC case 4 cumulus cloud field to provide a benchmark result, and computational performance and strong and weak scaling metrics are presented. The outcome is a thoroughly vetted, publicly available, open-source benchmark tool to study 3D radiative transfer from either internal or external sources of radiation at wavelengths for which scattering, emission, and absorption are important. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Design and Verification of a New Monochromatic Thermal Emission Component for the I3RC Community Monte Carlo Model

Loading next page...
 
/lp/ams/design-and-verification-of-a-new-monochromatic-thermal-emission-Rweu53mpTq
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0251.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model has been extended to include a source of photon emission from the surface and atmosphere, thereby making it capable of simulating scalar radiative transfer in a 3D scattering, absorbing, and emitting domain with both internal and external sources. The theoretical basis, computational implementation, verification of the internal emission, and computational performance of the resulting model, the “IMC+emission,” is presented. Thorough verification includes fundamental tests of reciprocity and energy conservation, comparison to analytical solutions, and comparison with another 3D model, the Spherical Harmonics Discrete Ordinate Method (SHDOM). All comparisons to fundamental tests and analytical solutions are accurate to within the precision of the simulations—typically better than 0.05%. Comparison cases to SHDOM were typically within a few percent, except for flux divergence near cloud edges, where the effects of grid definition between the two models manifest themselves. Finally, the model is applied to the established I3RC case 4 cumulus cloud field to provide a benchmark result, and computational performance and strong and weak scaling metrics are presented. The outcome is a thoroughly vetted, publicly available, open-source benchmark tool to study 3D radiative transfer from either internal or external sources of radiation at wavelengths for which scattering, emission, and absorption are important.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial