Design and Implementation of a GSI-Based Convection-Allowing Ensemble Data Assimilation and Forecast System for the PECAN Field Experiment. Part I: Optimal Configurations for Nocturnal Convection Prediction Using Retrospective Cases

Design and Implementation of a GSI-Based Convection-Allowing Ensemble Data Assimilation and... AbstractA real-time GSI-based and ensemble-based data assimilation (DA) and forecast system was implemented at the University of Oklahoma during the 2015 Plains Elevated Convection at Night (PECAN) experiment. Extensive experiments on the configuration of the cycled DA and on both the DA and forecast physics ensembles were conducted using retrospective cases to optimize the system design for nocturnal convection. The impacts of radar DA between 1200 and 1300 UTC, as well as the frequency and number of DA cycles and the DA physics configuration, extend through the following night. Ten-minute cycling of radar DA leads to more skillful forecasts than both more and less frequent cycling. The Thompson microphysics scheme for DA better analyzes the effects of morning convection on environmental moisture than WSM6, which improves the convection forecast the following night. A multi-PBL configuration during DA leads to less skillful short-term forecasts than even a relatively poorly performing single-PBL scheme. Deterministic and ensemble forecast physics configurations are also evaluated. Thompson microphysics and the Mellor–Yamada–Nakanishi–Niino (MYNN) PBL provide the most skillful nocturnal precipitation forecasts. A well thought out multiphysics configuration is shown to provide advantages over evenly distributing three of the best-performing microphysics and PBL schemes or a fixed MYNN/Thompson ensemble. This is shown using objective and subjective verification of precipitation and nonprecipitation variables, including convective initiation. Predictions of the low-level jet are sensitive to the PBL scheme, with the best scheme being variable and time dependent. These results guided the implementation and verification of a real-time ensemble DA and forecast system for PECAN. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Design and Implementation of a GSI-Based Convection-Allowing Ensemble Data Assimilation and Forecast System for the PECAN Field Experiment. Part I: Optimal Configurations for Nocturnal Convection Prediction Using Retrospective Cases

Loading next page...
 
/lp/ams/design-and-implementation-of-a-gsi-based-convection-allowing-ensemble-WkasJdVNu0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
D.O.I.
10.1175/WAF-D-16-0102.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA real-time GSI-based and ensemble-based data assimilation (DA) and forecast system was implemented at the University of Oklahoma during the 2015 Plains Elevated Convection at Night (PECAN) experiment. Extensive experiments on the configuration of the cycled DA and on both the DA and forecast physics ensembles were conducted using retrospective cases to optimize the system design for nocturnal convection. The impacts of radar DA between 1200 and 1300 UTC, as well as the frequency and number of DA cycles and the DA physics configuration, extend through the following night. Ten-minute cycling of radar DA leads to more skillful forecasts than both more and less frequent cycling. The Thompson microphysics scheme for DA better analyzes the effects of morning convection on environmental moisture than WSM6, which improves the convection forecast the following night. A multi-PBL configuration during DA leads to less skillful short-term forecasts than even a relatively poorly performing single-PBL scheme. Deterministic and ensemble forecast physics configurations are also evaluated. Thompson microphysics and the Mellor–Yamada–Nakanishi–Niino (MYNN) PBL provide the most skillful nocturnal precipitation forecasts. A well thought out multiphysics configuration is shown to provide advantages over evenly distributing three of the best-performing microphysics and PBL schemes or a fixed MYNN/Thompson ensemble. This is shown using objective and subjective verification of precipitation and nonprecipitation variables, including convective initiation. Predictions of the low-level jet are sensitive to the PBL scheme, with the best scheme being variable and time dependent. These results guided the implementation and verification of a real-time ensemble DA and forecast system for PECAN.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off