Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures

Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures Mesoscale convective systems are composed of numerous deep convective cells with varying amounts of large, convectively produced ice particles aloft. The magnitude of the 85-GHz brightness temperature depression resulting from scattering by large ice is believed to be related to the convective intensity and to the magnitude of the convective fluxes through a deep layer. The 85-GHz ice-scattering signature can be used to map the distribution of organized mesoscale regions of convectively produced large ice particles. The purpose of this article is to demonstrate the usefulness of the 85-GHz ice-scattering signature for describing the frequency, convective intensity, and geographic distribution of mesoscale convective systems.Objective criteria were developed to identify mesoscale convective systems from raw data from January, April, July, and October 1993. To minimize the effects of background contamination and to ensure that bounded areas contained convective elements, a mesoscale convective system was defined as an area bounded by 250 K of at least 2000 km2 of 85 GHz, with a minimum brightness temperature 225 K. Mesoscale convective systems extracted from the raw data were sorted and plotted by their areas and by their minimum brightness temperatures. Four area and brightness temperature classes were used to account for a spectrum of organized convection ranging from small to very large and from less organized to highly organized. The populations of mesoscale convective systems by this study's definition were consistent with infrared-based climatologies and large-scale seasonal dynamics. Land/water differences were highlighted by the plots of minimum brightness temperature. Most of the intense mesoscale convective systems were located on or near land and seemed to occur most frequently in particular areas in North America, South America, Africa, and India. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures

Loading next page...
 
/lp/ams/defining-mesoscale-convective-systems-by-their-85-ghz-ice-scattering-A2gHz68ZI0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Mesoscale convective systems are composed of numerous deep convective cells with varying amounts of large, convectively produced ice particles aloft. The magnitude of the 85-GHz brightness temperature depression resulting from scattering by large ice is believed to be related to the convective intensity and to the magnitude of the convective fluxes through a deep layer. The 85-GHz ice-scattering signature can be used to map the distribution of organized mesoscale regions of convectively produced large ice particles. The purpose of this article is to demonstrate the usefulness of the 85-GHz ice-scattering signature for describing the frequency, convective intensity, and geographic distribution of mesoscale convective systems.Objective criteria were developed to identify mesoscale convective systems from raw data from January, April, July, and October 1993. To minimize the effects of background contamination and to ensure that bounded areas contained convective elements, a mesoscale convective system was defined as an area bounded by 250 K of at least 2000 km2 of 85 GHz, with a minimum brightness temperature 225 K. Mesoscale convective systems extracted from the raw data were sorted and plotted by their areas and by their minimum brightness temperatures. Four area and brightness temperature classes were used to account for a spectrum of organized convection ranging from small to very large and from less organized to highly organized. The populations of mesoscale convective systems by this study's definition were consistent with infrared-based climatologies and large-scale seasonal dynamics. Land/water differences were highlighted by the plots of minimum brightness temperature. Most of the intense mesoscale convective systems were located on or near land and seemed to occur most frequently in particular areas in North America, South America, Africa, and India.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 11, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial