Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake

Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake AbstractThe 2013 federal Colorado River Basin Water Supply and Demand Study projected the water imbalance between future supply and demand to increase. The Colorado water supply (WS) exemplifies a pronounced quasi-decadal oscillation (QDO) of 10–20 years throughout its historical record; however, this QDO feature is unaccounted for in the climate models used to project the future WS. Adjacent to the Colorado River, the large watershed of the Great Salt Lake (GSL) in Utah records the hydrologic QDO signal in its water surface, leading previous studies to explore the cause of decadal fluctuations in the lake elevation and assess predictability. This study reports a remarkable coherence between the Colorado WS and the GSL elevation at the 10–20-yr time scale. Analysis of precipitation and terrestrial water storage anomalies suggests a cross-basin connection in the climate and hydrometeorological variations of the Colorado WS and the GSL. The 160-yr-long and well-kept GSL elevation record makes it an effective indicator for the Colorado WS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake

Loading next page...
 
/lp/ams/cross-basin-decadal-climate-regime-connecting-the-colorado-river-and-RpWZioxTt7
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-17-0081.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe 2013 federal Colorado River Basin Water Supply and Demand Study projected the water imbalance between future supply and demand to increase. The Colorado water supply (WS) exemplifies a pronounced quasi-decadal oscillation (QDO) of 10–20 years throughout its historical record; however, this QDO feature is unaccounted for in the climate models used to project the future WS. Adjacent to the Colorado River, the large watershed of the Great Salt Lake (GSL) in Utah records the hydrologic QDO signal in its water surface, leading previous studies to explore the cause of decadal fluctuations in the lake elevation and assess predictability. This study reports a remarkable coherence between the Colorado WS and the GSL elevation at the 10–20-yr time scale. Analysis of precipitation and terrestrial water storage anomalies suggests a cross-basin connection in the climate and hydrometeorological variations of the Colorado WS and the GSL. The 160-yr-long and well-kept GSL elevation record makes it an effective indicator for the Colorado WS.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off