Correcting Surface Wave Bias in Structure Function Estimates of Turbulent Kinetic Energy Dissipation Rate

Correcting Surface Wave Bias in Structure Function Estimates of Turbulent Kinetic Energy... AbstractThe combination of acoustic Doppler current profilers and the structure function methodology provides an attractive approach to making extended time series measurements of oceanic turbulence (the rate of turbulent kinetic energy dissipation ε) from moorings. However, this study shows that for deployments in the upper part of the water column, estimates of ε will be biased by the vertical gradient in wave orbital velocities. To remove this bias, a modified structure function methodology is developed that exploits the differing length scale dependencies of the contributions to the structure function resulting from turbulent and wave orbital motions. The success of the modified method is demonstrated through a comparison of ε estimates based on data from instruments at three depths over a 3-month period under a wide range of conditions, with appropriate scalings for wind stress and convective forcing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Correcting Surface Wave Bias in Structure Function Estimates of Turbulent Kinetic Energy Dissipation Rate

Loading next page...
 
/lp/ams/correcting-surface-wave-bias-in-structure-function-estimates-of-H0MJT171r3
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0059.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe combination of acoustic Doppler current profilers and the structure function methodology provides an attractive approach to making extended time series measurements of oceanic turbulence (the rate of turbulent kinetic energy dissipation ε) from moorings. However, this study shows that for deployments in the upper part of the water column, estimates of ε will be biased by the vertical gradient in wave orbital velocities. To remove this bias, a modified structure function methodology is developed that exploits the differing length scale dependencies of the contributions to the structure function resulting from turbulent and wave orbital motions. The success of the modified method is demonstrated through a comparison of ε estimates based on data from instruments at three depths over a 3-month period under a wide range of conditions, with appropriate scalings for wind stress and convective forcing.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Oct 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off