Correcting Biased Observation Model Error in Data Assimilation

Correcting Biased Observation Model Error in Data Assimilation AbstractWhile the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications model error with nontrivial biases is unavoidable. A practical example is errors in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. Together with the dynamical model error, the result is that many (in fact 99%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme that is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, positive results are shown with two examples. The first example is designed to produce a bimodality in the observation model error (typical of “cloudy” observations) by introducing obstructions to the observations that occur randomly in space and time. The second example, which is physically more realistic, is to assimilate cloudy satellite brightness temperature–like quantities, generated from a stochastic multicloud model for tropical convection and a simple radiative transfer model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Correcting Biased Observation Model Error in Data Assimilation

Loading next page...
 
/lp/ams/correcting-biased-observation-model-error-in-data-assimilation-g2ltAl4Lge
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0428.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWhile the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications model error with nontrivial biases is unavoidable. A practical example is errors in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. Together with the dynamical model error, the result is that many (in fact 99%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme that is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, positive results are shown with two examples. The first example is designed to produce a bimodality in the observation model error (typical of “cloudy” observations) by introducing obstructions to the observations that occur randomly in space and time. The second example, which is physically more realistic, is to assimilate cloudy satellite brightness temperature–like quantities, generated from a stochastic multicloud model for tropical convection and a simple radiative transfer model.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial