Correcting Biased Observation Model Error in Data Assimilation

Correcting Biased Observation Model Error in Data Assimilation AbstractWhile the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications model error with nontrivial biases is unavoidable. A practical example is errors in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. Together with the dynamical model error, the result is that many (in fact 99%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme that is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, positive results are shown with two examples. The first example is designed to produce a bimodality in the observation model error (typical of “cloudy” observations) by introducing obstructions to the observations that occur randomly in space and time. The second example, which is physically more realistic, is to assimilate cloudy satellite brightness temperature–like quantities, generated from a stochastic multicloud model for tropical convection and a simple radiative transfer model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Correcting Biased Observation Model Error in Data Assimilation

Loading next page...
 
/lp/ams/correcting-biased-observation-model-error-in-data-assimilation-g2ltAl4Lge
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0428.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWhile the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications model error with nontrivial biases is unavoidable. A practical example is errors in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. Together with the dynamical model error, the result is that many (in fact 99%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme that is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, positive results are shown with two examples. The first example is designed to produce a bimodality in the observation model error (typical of “cloudy” observations) by introducing obstructions to the observations that occur randomly in space and time. The second example, which is physically more realistic, is to assimilate cloudy satellite brightness temperature–like quantities, generated from a stochastic multicloud model for tropical convection and a simple radiative transfer model.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off