Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: Observational Baseline

Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics:... AbstractConvective transition statistics, which describe the relation between column-integrated water vapor (CWV) and precipitation, are compiled over tropical oceans using satellite and ARM site measurements to quantify the temperature and resolution dependence of the precipitation–CWV relation at fast time scales relevant to convection. At these time scales, and for precipitation especially, uncertainties associated with observational systems must be addressed by examining features with a variety of instrumentation and identifying robust behaviors versus instrument sensitivity at high rain rates. Here the sharp pickup in precipitation as CWV exceeds a certain critical threshold is found to be insensitive to spatial resolution, with convective onset occurring at higher CWV but at lower column relative humidity as bulk tropospheric temperature increases. Mean tropospheric temperature profiles conditioned on precipitation show vertically coherent structure across a wide range of temperature, reaffirming the use of a bulk temperature measure in defining the convective transition statistics. The joint probability distribution of CWV and precipitation develops a peak probability at low precipitation for CWV above critical, with rapidly decreasing probability of high precipitation below and near critical, and exhibits systematic changes under spatial averaging. The precipitation pickup with CWV is reasonably insensitive to time averaging up to several hours but is smoothed at daily time scales. This work demonstrates that CWV relative to critical serves as an effective predictor of precipitation with only minor geographic variations in the tropics, quantifies precipitation-related statistics subject to different spatial–temporal resolution, and provides a baseline for model comparison to apply these statistics as observational constraints on precipitation processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: Observational Baseline

Loading next page...
 
/lp/ams/convective-transition-statistics-over-tropical-oceans-for-climate-QIjWEMesra
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0287.1
Publisher site
See Article on Publisher Site

Abstract

AbstractConvective transition statistics, which describe the relation between column-integrated water vapor (CWV) and precipitation, are compiled over tropical oceans using satellite and ARM site measurements to quantify the temperature and resolution dependence of the precipitation–CWV relation at fast time scales relevant to convection. At these time scales, and for precipitation especially, uncertainties associated with observational systems must be addressed by examining features with a variety of instrumentation and identifying robust behaviors versus instrument sensitivity at high rain rates. Here the sharp pickup in precipitation as CWV exceeds a certain critical threshold is found to be insensitive to spatial resolution, with convective onset occurring at higher CWV but at lower column relative humidity as bulk tropospheric temperature increases. Mean tropospheric temperature profiles conditioned on precipitation show vertically coherent structure across a wide range of temperature, reaffirming the use of a bulk temperature measure in defining the convective transition statistics. The joint probability distribution of CWV and precipitation develops a peak probability at low precipitation for CWV above critical, with rapidly decreasing probability of high precipitation below and near critical, and exhibits systematic changes under spatial averaging. The precipitation pickup with CWV is reasonably insensitive to time averaging up to several hours but is smoothed at daily time scales. This work demonstrates that CWV relative to critical serves as an effective predictor of precipitation with only minor geographic variations in the tropics, quantifies precipitation-related statistics subject to different spatial–temporal resolution, and provides a baseline for model comparison to apply these statistics as observational constraints on precipitation processes.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: May 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off