Contributions of the North Pacific Meridional Mode to Ensemble Spread of ENSO Prediction

Contributions of the North Pacific Meridional Mode to Ensemble Spread of ENSO Prediction AbstractSeasonal prediction of El Niño–Southern Oscillation (ENSO) employs the ensemble method, which samples the uncertainty in initial conditions. While much attention has been given to the ensemble mean, the ensemble spread limits the reliability of the forecast. Spatiotemporal coevolution of intermember anomalies of sea surface temperature (SST) and low-level winds over the Pacific is examined in ensemble hindcasts. Two types of evolution of intermember SST anomalies in the equatorial Pacific are identified. The first features an apparent southwestward propagation of the SST spread from the subtropical northeastern Pacific southeast of Hawaii to the central equatorial Pacific in boreal winter–spring, indicative of the precursor effect of the North Pacific meridional mode (NPMM) on ENSO variability. Extratropical atmospheric variability generates ensemble spread in ENSO through wind–evaporation–SST (WES) in the subtropical northeastern Pacific and then Bjerknes feedback on the equator. In the second type, ensemble spread grows in the equatorial Pacific with a weak contribution from the subtropical southeastern Pacific in summer. Thus, the extratropical influence on ENSO evolution is much stronger in the Northern Hemisphere than in the Southern Hemisphere. The growth of Niño-4 SST ensemble spread shows a strong seasonality. In hindcasts initialized in September–March, the Niño-4 SST spread grows rapidly in January–April, stabilizes in May–June, and grows again in July–September. The rapid growth of the Niño-4 SST spread in January–April is due to the arrival of NPMM, while the slowdown in May–June and rapid growth in July–September are attributable primarily to the seasonality of equatorial ocean–atmosphere interaction. NPMM contributes to the ensemble spread in equatorial Pacific SST, limiting the reliability of ENSO prediction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Contributions of the North Pacific Meridional Mode to Ensemble Spread of ENSO Prediction

Loading next page...
 
/lp/ams/contributions-of-the-north-pacific-meridional-mode-to-ensemble-spread-aSOYoE5qea
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0182.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSeasonal prediction of El Niño–Southern Oscillation (ENSO) employs the ensemble method, which samples the uncertainty in initial conditions. While much attention has been given to the ensemble mean, the ensemble spread limits the reliability of the forecast. Spatiotemporal coevolution of intermember anomalies of sea surface temperature (SST) and low-level winds over the Pacific is examined in ensemble hindcasts. Two types of evolution of intermember SST anomalies in the equatorial Pacific are identified. The first features an apparent southwestward propagation of the SST spread from the subtropical northeastern Pacific southeast of Hawaii to the central equatorial Pacific in boreal winter–spring, indicative of the precursor effect of the North Pacific meridional mode (NPMM) on ENSO variability. Extratropical atmospheric variability generates ensemble spread in ENSO through wind–evaporation–SST (WES) in the subtropical northeastern Pacific and then Bjerknes feedback on the equator. In the second type, ensemble spread grows in the equatorial Pacific with a weak contribution from the subtropical southeastern Pacific in summer. Thus, the extratropical influence on ENSO evolution is much stronger in the Northern Hemisphere than in the Southern Hemisphere. The growth of Niño-4 SST ensemble spread shows a strong seasonality. In hindcasts initialized in September–March, the Niño-4 SST spread grows rapidly in January–April, stabilizes in May–June, and grows again in July–September. The rapid growth of the Niño-4 SST spread in January–April is due to the arrival of NPMM, while the slowdown in May–June and rapid growth in July–September are attributable primarily to the seasonality of equatorial ocean–atmosphere interaction. NPMM contributes to the ensemble spread in equatorial Pacific SST, limiting the reliability of ENSO prediction.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off