Contributions of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation to Global Ocean Heat Content Distribution

Contributions of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation to Global... AbstractRegional sea surface temperature (SST) mode variabilities, especially the La Niña–like Pacific Ocean temperature pattern known as the negative phase of the interdecadal Pacific oscillation (IPO) and the associated heat redistribution within the ocean, are the leading mechanisms explaining the recent global warming hiatus. Here version 1 of the Community Earth System Model (CESM) is used to examine how different phases of two leading decadal time scale SST modes, namely the IPO and the Atlantic multidecadal oscillation (AMO), contribute to heat redistribution in the global ocean in the absence of time-evolving external forcings. The results show that both the IPO and AMO contribute a similar magnitude to global mean surface temperature and ocean heat redistribution. Both modes contribute warmer surface temperature and higher upper ocean heat content in their positive phase, and the reverse in their negative phase. Regionally, patterns of ocean heat distribution in the upper few hundred meters of the tropical and subtropical Pacific Ocean depend highly on the IPO phase via the IPO-associated changes in the subtropical cell. In the Atlantic, ocean heat content is primarily associated with the state of the AMO. The interconnections between the IPO, AMO, and global ocean heat distribution are established through the atmospheric bridge and the Atlantic meridional overturning circulation. An in-phase variant of the IPO and AMO can lead to much higher surface temperatures and heat content changes than an out-of-phase variation. This result suggests that changes in the IPO and AMO are potentially capable of modulating externally forced SST and heat content trends. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Contributions of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation to Global Ocean Heat Content Distribution

Loading next page...
 
/lp/ams/contributions-of-interdecadal-pacific-oscillation-and-atlantic-5JLc0Pvv8T
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0204.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRegional sea surface temperature (SST) mode variabilities, especially the La Niña–like Pacific Ocean temperature pattern known as the negative phase of the interdecadal Pacific oscillation (IPO) and the associated heat redistribution within the ocean, are the leading mechanisms explaining the recent global warming hiatus. Here version 1 of the Community Earth System Model (CESM) is used to examine how different phases of two leading decadal time scale SST modes, namely the IPO and the Atlantic multidecadal oscillation (AMO), contribute to heat redistribution in the global ocean in the absence of time-evolving external forcings. The results show that both the IPO and AMO contribute a similar magnitude to global mean surface temperature and ocean heat redistribution. Both modes contribute warmer surface temperature and higher upper ocean heat content in their positive phase, and the reverse in their negative phase. Regionally, patterns of ocean heat distribution in the upper few hundred meters of the tropical and subtropical Pacific Ocean depend highly on the IPO phase via the IPO-associated changes in the subtropical cell. In the Atlantic, ocean heat content is primarily associated with the state of the AMO. The interconnections between the IPO, AMO, and global ocean heat distribution are established through the atmospheric bridge and the Atlantic meridional overturning circulation. An in-phase variant of the IPO and AMO can lead to much higher surface temperatures and heat content changes than an out-of-phase variation. This result suggests that changes in the IPO and AMO are potentially capable of modulating externally forced SST and heat content trends.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off