Constraining Ensemble Forecasts of Discrete Convective Initiation with Surface Observations

Constraining Ensemble Forecasts of Discrete Convective Initiation with Surface Observations AbstractPredicting when and where individual convective storms will develop remains an elusive challenge. Previous studies have suggested that surface observations can capture convective-scale features relevant to the convective initiation (CI) process, and new surface observing platforms such as crowdsourcing could significantly increase surface observation density in the near future. Here, a series of observing system simulation experiments (OSSEs) are performed to determine the required density of surface observations necessary to constrain storm-scale forecasts of CI. Ensemble simulations of an environment where CI occurs are cycled hourly using the CM1 model while assimilating synthetic surface observations at varying densities. Skillful and reliable storm-scale forecasts of CI are produced when surface observations of at least 4-km—and particularly with 1-km—density are assimilated, but only for forecasts initiated within 1 h of CI. Time scales of forecast improvement in surface variables suggest that hourly cycling is at the upper limit for CI forecast improvement. In addition, the structure of the assimilation increments, ensemble calibration in these experiments, and challenges of convective-scale assimilation are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Constraining Ensemble Forecasts of Discrete Convective Initiation with Surface Observations

Loading next page...
 
/lp/ams/constraining-ensemble-forecasts-of-discrete-convective-initiation-with-mt7WXgnVzX
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0395.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPredicting when and where individual convective storms will develop remains an elusive challenge. Previous studies have suggested that surface observations can capture convective-scale features relevant to the convective initiation (CI) process, and new surface observing platforms such as crowdsourcing could significantly increase surface observation density in the near future. Here, a series of observing system simulation experiments (OSSEs) are performed to determine the required density of surface observations necessary to constrain storm-scale forecasts of CI. Ensemble simulations of an environment where CI occurs are cycled hourly using the CM1 model while assimilating synthetic surface observations at varying densities. Skillful and reliable storm-scale forecasts of CI are produced when surface observations of at least 4-km—and particularly with 1-km—density are assimilated, but only for forecasts initiated within 1 h of CI. Time scales of forecast improvement in surface variables suggest that hourly cycling is at the upper limit for CI forecast improvement. In addition, the structure of the assimilation increments, ensemble calibration in these experiments, and challenges of convective-scale assimilation are discussed.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial