Comparisons of Global Terrestrial Surface Water Datasets over 15 Years

Comparisons of Global Terrestrial Surface Water Datasets over 15 Years AbstractContinental surface water extents and dynamics are key information to model Earth’s hydrological and biochemical cycles. This study presents global and regional comparisons between two multisatellite surface water extent datasets, the Global Inundation Extent from Multi-Satellites (GIEMS) and the Surface Water Microwave Product Series (SWAMPS), for the 1993–2007 period, along with two widely used static inundation datasets, the Global Lakes and Wetlands Database (GLWD) and the Matthews and Fung wetland estimates. Maximum surface water extents derived from these datasets are largely different: ~13 × 106 km2 from GLWD, ~5.3 × 106 km2 from Matthews and Fung, ~6.2 × 106 km2 from GIEMS, and ~10.3 × 106 km2 from SWAMPS. SWAMPS global maximum surface extent reduces by nearly 51% (to ~5 × 106 km2) when applying a coastal filter, showing a strong contamination in this retrieval over the coastal regions. Anomalous surface waters are also detected with SWAMPS over desert areas. The seasonal amplitude of the GIEMS surface waters is much larger than the SWAMPS estimates, and GIEMS dynamics is more consistent with other hydrological variables such as the river discharge. Over the Amazon basin, GIEMS and SWAMPS show a very high time series correlation (95%), but with SWAMPS maximum extent half the size of that from GIEMS and from previous synthetic aperture radar estimates. Over the Niger basin, SWAMPS seasonal cycle is out of phase with both GIEMS and MODIS-derived water extent estimates, as well as with river discharge data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Comparisons of Global Terrestrial Surface Water Datasets over 15 Years

Loading next page...
 
/lp/ams/comparisons-of-global-terrestrial-surface-water-datasets-over-15-years-uV0toWR8ky
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0206.1
Publisher site
See Article on Publisher Site

Abstract

AbstractContinental surface water extents and dynamics are key information to model Earth’s hydrological and biochemical cycles. This study presents global and regional comparisons between two multisatellite surface water extent datasets, the Global Inundation Extent from Multi-Satellites (GIEMS) and the Surface Water Microwave Product Series (SWAMPS), for the 1993–2007 period, along with two widely used static inundation datasets, the Global Lakes and Wetlands Database (GLWD) and the Matthews and Fung wetland estimates. Maximum surface water extents derived from these datasets are largely different: ~13 × 106 km2 from GLWD, ~5.3 × 106 km2 from Matthews and Fung, ~6.2 × 106 km2 from GIEMS, and ~10.3 × 106 km2 from SWAMPS. SWAMPS global maximum surface extent reduces by nearly 51% (to ~5 × 106 km2) when applying a coastal filter, showing a strong contamination in this retrieval over the coastal regions. Anomalous surface waters are also detected with SWAMPS over desert areas. The seasonal amplitude of the GIEMS surface waters is much larger than the SWAMPS estimates, and GIEMS dynamics is more consistent with other hydrological variables such as the river discharge. Over the Amazon basin, GIEMS and SWAMPS show a very high time series correlation (95%), but with SWAMPS maximum extent half the size of that from GIEMS and from previous synthetic aperture radar estimates. Over the Niger basin, SWAMPS seasonal cycle is out of phase with both GIEMS and MODIS-derived water extent estimates, as well as with river discharge data.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Apr 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial