Comparison of the Analyses and Forecasts of a Tornadic Supercell Storm from Assimilating Phased-Array Radar and WSR-88D Observations

Comparison of the Analyses and Forecasts of a Tornadic Supercell Storm from Assimilating... AbstractNOAA’s National Severe Storms Laboratory is actively developing phased-array radar (PAR) technology, a potential next-generation weather radar, to replace the current operational WSR-88D radars. One unique feature of PAR is its rapid scanning capability, which is at least 4–5 times faster than the scanning rate of WSR-88D. To explore the impact of such high-frequency PAR observations compared with traditional WSR-88D on severe weather forecasting, several storm-scale data assimilation and forecast experiments are conducted. Reflectivity and radial velocity observations from the 22 May 2011 Ada, Oklahoma, tornadic supercell storm are assimilated over a 45-min period using observations from the experimental PAR located in Norman, Oklahoma, and the operational WSR-88D radar at Oklahoma City, Oklahoma. The radar observations are assimilated into the ARPS model within a heterogeneous mesoscale environment and 1-h ensemble forecasts are generated from analyses every 15 min. With a 30-min assimilation period, the PAR experiment is able to analyze more realistic storm structures, resulting in higher skill scores and higher probabilities of low-level vorticity that align better with the locations of radar-derived rotation compared with the WSR-88D experiment. Assimilation of PAR observations for a longer 45-min time period generates similar forecasts compared to assimilating WSR-88D observations, indicating that the advantage of rapid-scan PAR is more noticeable over a shorter 30-min assimilation period. An additional experiment reveals that the improved accuracy from the PAR experiment over a shorter assimilation period is mainly due to its high-temporal-frequency sampling capability. These results highlight the benefit of PAR’s rapid-scan capability in storm-scale modeling that can potentially extend severe weather warning lead times. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Comparison of the Analyses and Forecasts of a Tornadic Supercell Storm from Assimilating Phased-Array Radar and WSR-88D Observations

Loading next page...
 
/lp/ams/comparison-of-the-analyses-and-forecasts-of-a-tornadic-supercell-storm-N7REJ8fkQz
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
D.O.I.
10.1175/WAF-D-16-0159.1
Publisher site
See Article on Publisher Site

Abstract

AbstractNOAA’s National Severe Storms Laboratory is actively developing phased-array radar (PAR) technology, a potential next-generation weather radar, to replace the current operational WSR-88D radars. One unique feature of PAR is its rapid scanning capability, which is at least 4–5 times faster than the scanning rate of WSR-88D. To explore the impact of such high-frequency PAR observations compared with traditional WSR-88D on severe weather forecasting, several storm-scale data assimilation and forecast experiments are conducted. Reflectivity and radial velocity observations from the 22 May 2011 Ada, Oklahoma, tornadic supercell storm are assimilated over a 45-min period using observations from the experimental PAR located in Norman, Oklahoma, and the operational WSR-88D radar at Oklahoma City, Oklahoma. The radar observations are assimilated into the ARPS model within a heterogeneous mesoscale environment and 1-h ensemble forecasts are generated from analyses every 15 min. With a 30-min assimilation period, the PAR experiment is able to analyze more realistic storm structures, resulting in higher skill scores and higher probabilities of low-level vorticity that align better with the locations of radar-derived rotation compared with the WSR-88D experiment. Assimilation of PAR observations for a longer 45-min time period generates similar forecasts compared to assimilating WSR-88D observations, indicating that the advantage of rapid-scan PAR is more noticeable over a shorter 30-min assimilation period. An additional experiment reveals that the improved accuracy from the PAR experiment over a shorter assimilation period is mainly due to its high-temporal-frequency sampling capability. These results highlight the benefit of PAR’s rapid-scan capability in storm-scale modeling that can potentially extend severe weather warning lead times.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial