Comparison of Rip Current Hazard Likelihood Forecasts with Observed Rip Current Speeds

Comparison of Rip Current Hazard Likelihood Forecasts with Observed Rip Current Speeds AbstractAlthough rip currents are a major hazard for beachgoers, the relationship between the danger to swimmers and the physical properties of rip current circulation is not well understood. Here, the relationship between statistical model estimates of hazardous rip current likelihood and in situ velocity observations is assessed. The statistical model is part of a forecasting system that is being made operational by the National Weather Service to predict rip current hazard likelihood as a function of wave conditions and water level. The temporal variability of rip current speeds (offshore-directed currents) observed on an energetic sandy beach is correlated with the hindcasted hazard likelihood for a wide range of conditions. High likelihoods and rip current speeds occurred for low water levels, nearly shore-normal wave angles, and moderate or larger wave heights. The relationship between modeled hazard likelihood and the frequency with which rip current speeds exceeded a threshold was assessed for a range of threshold speeds. The frequency of occurrence of high (threshold exceeding) rip current speeds is consistent with the modeled probability of hazard, with a maximum Brier skill score of 0.65 for a threshold speed of 0.23 m s−1, and skill scores greater than 0.60 for threshold speeds between 0.15 and 0.30 m s−1. The results suggest that rip current speed may be an effective proxy for hazard level and that speeds greater than ~0.2 m s−1 may be hazardous to swimmers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Comparison of Rip Current Hazard Likelihood Forecasts with Observed Rip Current Speeds

Loading next page...
 
/lp/ams/comparison-of-rip-current-hazard-likelihood-forecasts-with-observed-VslITwDD0A
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0076.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAlthough rip currents are a major hazard for beachgoers, the relationship between the danger to swimmers and the physical properties of rip current circulation is not well understood. Here, the relationship between statistical model estimates of hazardous rip current likelihood and in situ velocity observations is assessed. The statistical model is part of a forecasting system that is being made operational by the National Weather Service to predict rip current hazard likelihood as a function of wave conditions and water level. The temporal variability of rip current speeds (offshore-directed currents) observed on an energetic sandy beach is correlated with the hindcasted hazard likelihood for a wide range of conditions. High likelihoods and rip current speeds occurred for low water levels, nearly shore-normal wave angles, and moderate or larger wave heights. The relationship between modeled hazard likelihood and the frequency with which rip current speeds exceeded a threshold was assessed for a range of threshold speeds. The frequency of occurrence of high (threshold exceeding) rip current speeds is consistent with the modeled probability of hazard, with a maximum Brier skill score of 0.65 for a threshold speed of 0.23 m s−1, and skill scores greater than 0.60 for threshold speeds between 0.15 and 0.30 m s−1. The results suggest that rip current speed may be an effective proxy for hazard level and that speeds greater than ~0.2 m s−1 may be hazardous to swimmers.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off