Comparison of Raindrop Size Distributions in a Midlatitude Continental Squall Line during Different Stages as Measured by Parsivel over East China

Comparison of Raindrop Size Distributions in a Midlatitude Continental Squall Line during... AbstractThe characteristics of raindrop size distributions (DSDs) during a midlatitude continental squall line on 30 July 2014 in east China are studied, and the different life stages are observed by OTT second-generation Particle Size Velocity (Parsivel2) disdrometers at Chuzhou during the mature stage and Nanjing during the declining stage. The observed rainfall is classified into convective line, transition, and stratiform regions based on the structure of the radar reflectivity Z and rainfall intensity R. The results show that the DSD characteristics of the different precipitation types and different squall-line stages are very different. The convective center has the largest number concentration and quantity of large drops corresponding to the highest rain rate; the rain rates in the trailing edge and stratiform regions are similar, although a lower concentration of small drops is present in the latter. Between the two stages, the drop size and number concentration for the convective center decrease, although the leading edge during the declining stage has more numerous larger drops; the number concentration is similar in the stratiform rainfall, but the drops become much smaller. For the normalized distribution, the scaled spectra for the convective center are closer to an exponential distribution, and the μ value during the declining stage is larger than that during the mature stage for the stratiform region and similar during both stages for the convective center. The declining stage has a larger exponent b and smaller coefficient A in the Z–R relationship based on fits for the entire dataset. Moreover, the R(ZH, ZDR) estimator is more accurate than that when using the Z–R relation algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Comparison of Raindrop Size Distributions in a Midlatitude Continental Squall Line during Different Stages as Measured by Parsivel over East China

Loading next page...
 
/lp/ams/comparison-of-raindrop-size-distributions-in-a-midlatitude-continental-07cQLPef0W
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0336.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe characteristics of raindrop size distributions (DSDs) during a midlatitude continental squall line on 30 July 2014 in east China are studied, and the different life stages are observed by OTT second-generation Particle Size Velocity (Parsivel2) disdrometers at Chuzhou during the mature stage and Nanjing during the declining stage. The observed rainfall is classified into convective line, transition, and stratiform regions based on the structure of the radar reflectivity Z and rainfall intensity R. The results show that the DSD characteristics of the different precipitation types and different squall-line stages are very different. The convective center has the largest number concentration and quantity of large drops corresponding to the highest rain rate; the rain rates in the trailing edge and stratiform regions are similar, although a lower concentration of small drops is present in the latter. Between the two stages, the drop size and number concentration for the convective center decrease, although the leading edge during the declining stage has more numerous larger drops; the number concentration is similar in the stratiform rainfall, but the drops become much smaller. For the normalized distribution, the scaled spectra for the convective center are closer to an exponential distribution, and the μ value during the declining stage is larger than that during the mature stage for the stratiform region and similar during both stages for the convective center. The declining stage has a larger exponent b and smaller coefficient A in the Z–R relationship based on fits for the entire dataset. Moreover, the R(ZH, ZDR) estimator is more accurate than that when using the Z–R relation algorithm.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jul 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off