Comparison of Probabilistic Quantitative Precipitation Forecasts from Two Postprocessing Mechanisms

Comparison of Probabilistic Quantitative Precipitation Forecasts from Two Postprocessing Mechanisms AbstractThis article compares the skill of medium-range probabilistic quantitative precipitation forecasts (PQPFs) generated via two postprocessing mechanisms: 1) the mixed-type meta-Gaussian distribution (MMGD) model and 2) the censored shifted Gamma distribution (CSGD) model. MMGD derives the PQPF by conditioning on the mean of raw ensemble forecasts. CSGD, on the other hand, is a regression-based mechanism that estimates PQPF from a prescribed distribution by adjusting the climatological distribution according to the mean, spread, and probability of precipitation (POP) of raw ensemble forecasts. Each mechanism is applied to the reforecast of the Global Ensemble Forecast System (GEFS) to yield a postprocessed PQPF over lead times between 24 and 72 h. The outcome of an evaluation experiment over the mid-Atlantic region of the United States indicates that the CSGD approach broadly outperforms the MMGD in terms of both the ensemble mean and the reliability of distribution, although the performance gap tends to be narrow, and at times mixed, at higher precipitation thresholds (>5 mm). Analysis of a rare storm event demonstrates the superior reliability and sharpness of the CSGD PQPF and underscores the issue of overforecasting by the MMGD PQPF. This work suggests that the CSGD’s incorporation of ensemble spread and POP does help enhance its skill, particularly for light forecast amounts, but CSGD’s model structure and its use of optimization in parameter estimation likely play a more determining role in its outperformance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Comparison of Probabilistic Quantitative Precipitation Forecasts from Two Postprocessing Mechanisms

Loading next page...
 
/lp/ams/comparison-of-probabilistic-quantitative-precipitation-forecasts-from-K3p70vjsBx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0293.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis article compares the skill of medium-range probabilistic quantitative precipitation forecasts (PQPFs) generated via two postprocessing mechanisms: 1) the mixed-type meta-Gaussian distribution (MMGD) model and 2) the censored shifted Gamma distribution (CSGD) model. MMGD derives the PQPF by conditioning on the mean of raw ensemble forecasts. CSGD, on the other hand, is a regression-based mechanism that estimates PQPF from a prescribed distribution by adjusting the climatological distribution according to the mean, spread, and probability of precipitation (POP) of raw ensemble forecasts. Each mechanism is applied to the reforecast of the Global Ensemble Forecast System (GEFS) to yield a postprocessed PQPF over lead times between 24 and 72 h. The outcome of an evaluation experiment over the mid-Atlantic region of the United States indicates that the CSGD approach broadly outperforms the MMGD in terms of both the ensemble mean and the reliability of distribution, although the performance gap tends to be narrow, and at times mixed, at higher precipitation thresholds (>5 mm). Analysis of a rare storm event demonstrates the superior reliability and sharpness of the CSGD PQPF and underscores the issue of overforecasting by the MMGD PQPF. This work suggests that the CSGD’s incorporation of ensemble spread and POP does help enhance its skill, particularly for light forecast amounts, but CSGD’s model structure and its use of optimization in parameter estimation likely play a more determining role in its outperformance.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Nov 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial