Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models

Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical... An increasing number of satellite-based rainfall products are now available in nearreal time over the Internet to help meet the needs of weather forecasters and climate scientists, as well as a wide range of decision makers, including hydrologists, agriculturalists, emergency managers, and industrialists. Many of these satellite products are so newly developed that a comprehensive evaluation has not yet been undertaken. This article provides potential users of short-interval satellite rainfall estimates with information on the accuracy of such estimates. Since late 2002 the authors have been performing daily validation and intercomparisons of several operational satellite rainfall retrieval algorithms over Australia, the United States, and northwestern Europe. Short-range quantitative precipitation forecasts from four numerical weather prediction (NWP) models are also included for comparison.Synthesis of four years of daily rainfall validation results shows that the satellite-derived estimates of precipitation occurrence, amount, and intensity are most accurate during the warm season and at lower latitudes, where the rainfall is primarily convective in nature. In contrast, the NWP models perform better than the satellite estimates during the cool season when non-convective precipitation is dominant. An optimal rain-monitoring strategy for remote regions might therefore judiciously combine information from both satellite and NWP models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models

Loading next page...
 
/lp/ams/comparison-of-near-real-time-precipitation-estimates-from-satellite-0qois5taej
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-88-1-47
Publisher site
See Article on Publisher Site

Abstract

An increasing number of satellite-based rainfall products are now available in nearreal time over the Internet to help meet the needs of weather forecasters and climate scientists, as well as a wide range of decision makers, including hydrologists, agriculturalists, emergency managers, and industrialists. Many of these satellite products are so newly developed that a comprehensive evaluation has not yet been undertaken. This article provides potential users of short-interval satellite rainfall estimates with information on the accuracy of such estimates. Since late 2002 the authors have been performing daily validation and intercomparisons of several operational satellite rainfall retrieval algorithms over Australia, the United States, and northwestern Europe. Short-range quantitative precipitation forecasts from four numerical weather prediction (NWP) models are also included for comparison.Synthesis of four years of daily rainfall validation results shows that the satellite-derived estimates of precipitation occurrence, amount, and intensity are most accurate during the warm season and at lower latitudes, where the rainfall is primarily convective in nature. In contrast, the NWP models perform better than the satellite estimates during the cool season when non-convective precipitation is dominant. An optimal rain-monitoring strategy for remote regions might therefore judiciously combine information from both satellite and NWP models.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 6, 2007

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off