Comparative Evaluation of Three Schaake Shuffle Schemes in Postprocessing GEFS Precipitation Ensemble Forecasts

Comparative Evaluation of Three Schaake Shuffle Schemes in Postprocessing GEFS Precipitation... AbstractNatural weather systems possess certain spatiotemporal variability and correlations. Preserving these spatiotemporal properties is a significant challenge in postprocessing ensemble weather forecasts. To address this challenge, several rank-based methods, the Schaake Shuffle and its variants, have been developed in recent years. This paper presents an extensive assessment of the Schaake Shuffle and its two variants. These schemes differ in how the reference multivariate rank structure is established. The first scheme (SS-CLM), an implementation of the original Schaake Shuffle method, relies on climatological observations to construct rank structures. The second scheme (SS-ANA) utilizes precipitation event analogs obtained from a historical archive of observations. The third scheme (SS-ENS) employs ensemble members from the Global Ensemble Forecast System (GEFS). Each of the three schemes is applied to postprocess precipitation ensemble forecasts from the GEFS for its first three forecast days over the mid-Atlantic region of the United States. In general, the effectiveness of these schemes depends on several factors, including the season (or precipitation pattern) and the level of gridcell aggregation. It is found that 1) the SS-CLM and SS-ANA behave similarly in spatial and temporal correlations; 2) by a measure for capturing spatial variability, the SS-ENS outperforms the SS-ANA, which in turn outperforms the SS-CLM; and 3), overall, the SS-ANA performs better than the SS-CLM. The study also reveals that it is important to choose a proper size for the postprocessed ensembles in order to capture extreme precipitation events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Comparative Evaluation of Three Schaake Shuffle Schemes in Postprocessing GEFS Precipitation Ensemble Forecasts

Loading next page...
 
/lp/ams/comparative-evaluation-of-three-schaake-shuffle-schemes-in-post-VOxWBTVYTc
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-17-0054.1
Publisher site
See Article on Publisher Site

Abstract

AbstractNatural weather systems possess certain spatiotemporal variability and correlations. Preserving these spatiotemporal properties is a significant challenge in postprocessing ensemble weather forecasts. To address this challenge, several rank-based methods, the Schaake Shuffle and its variants, have been developed in recent years. This paper presents an extensive assessment of the Schaake Shuffle and its two variants. These schemes differ in how the reference multivariate rank structure is established. The first scheme (SS-CLM), an implementation of the original Schaake Shuffle method, relies on climatological observations to construct rank structures. The second scheme (SS-ANA) utilizes precipitation event analogs obtained from a historical archive of observations. The third scheme (SS-ENS) employs ensemble members from the Global Ensemble Forecast System (GEFS). Each of the three schemes is applied to postprocess precipitation ensemble forecasts from the GEFS for its first three forecast days over the mid-Atlantic region of the United States. In general, the effectiveness of these schemes depends on several factors, including the season (or precipitation pattern) and the level of gridcell aggregation. It is found that 1) the SS-CLM and SS-ANA behave similarly in spatial and temporal correlations; 2) by a measure for capturing spatial variability, the SS-ENS outperforms the SS-ANA, which in turn outperforms the SS-CLM; and 3), overall, the SS-ANA performs better than the SS-CLM. The study also reveals that it is important to choose a proper size for the postprocessed ensembles in order to capture extreme precipitation events.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Mar 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off